Enhanced Parameter Estimation with Periodically Driven Quantum Probe

I propose a quantum metrology protocol for measuring frequencies and weak forces based on a periodic modulating quantum Jahn–Teller system composed of a single spin and two bosonic modes. I show that, in the first order of the frequency drive, the time-independent effective Hamiltonian describes spi...

Full description

Bibliographic Details
Main Author: Peter A. Ivanov
Format: Article
Language:English
Published: MDPI AG 2021-10-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/23/10/1333
Description
Summary:I propose a quantum metrology protocol for measuring frequencies and weak forces based on a periodic modulating quantum Jahn–Teller system composed of a single spin and two bosonic modes. I show that, in the first order of the frequency drive, the time-independent effective Hamiltonian describes spin-dependent interaction between the two bosonic modes. In the limit of high-frequency drive and low bosonic frequency, the quantum Jahn–Teller system exhibits critical behavior which can be used for high-precision quantum estimation. A major advantage of the scheme is the robustness of the system against spin decoherence, which allows it to perform parameter estimation with measurement time not limited by spin dephasing.
ISSN:1099-4300