An Exclusion Zone for Ca2+ Channels around Docked Vesicles Explains Release Control by Multiple Channels at a CNS Synapse.
The spatial arrangement of Ca2+ channels and vesicles remains unknown for most CNS synapses, despite of the crucial importance of this geometrical parameter for the Ca2+ control of transmitter release. At a large model synapse, the calyx of Held, transmitter release is controlled by several Ca2+ cha...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2015-05-01
|
Series: | PLoS Computational Biology |
Online Access: | http://europepmc.org/articles/PMC4423980?pdf=render |
_version_ | 1818420042932420608 |
---|---|
author | Daniel Keller Norbert Babai Olexiy Kochubey Yunyun Han Henry Markram Felix Schürmann Ralf Schneggenburger |
author_facet | Daniel Keller Norbert Babai Olexiy Kochubey Yunyun Han Henry Markram Felix Schürmann Ralf Schneggenburger |
author_sort | Daniel Keller |
collection | DOAJ |
description | The spatial arrangement of Ca2+ channels and vesicles remains unknown for most CNS synapses, despite of the crucial importance of this geometrical parameter for the Ca2+ control of transmitter release. At a large model synapse, the calyx of Held, transmitter release is controlled by several Ca2+ channels in a "domain overlap" mode, at least in young animals. To study the geometrical constraints of Ca2+ channel placement in domain overlap control of release, we used stochastic MCell modelling, at active zones for which the position of docked vesicles was derived from electron microscopy (EM). We found that random placement of Ca2+ channels was unable to produce high slope values between release and presynaptic Ca2+ entry, a hallmark of domain overlap, and yielded excessively large release probabilities. The simple assumption that Ca2+ channels can be located anywhere at active zones, except below a critical distance of ~ 30 nm away from docked vesicles ("exclusion zone"), rescued high slope values and low release probabilities. Alternatively, high slope values can also be obtained by placing all Ca2+ channels into a single supercluster, which however results in significantly higher heterogeneity of release probabilities. We also show experimentally that high slope values, and the sensitivity to the slow Ca2+ chelator EGTA-AM, are maintained with developmental maturation of the calyx synapse. Taken together, domain overlap control of release represents a highly organized active zone architecture in which Ca2+ channels must obey a certain distance to docked vesicles. Furthermore, domain overlap can be employed by near-mature, fast-releasing synapses. |
first_indexed | 2024-12-14T12:48:11Z |
format | Article |
id | doaj.art-d8f6e9fec64d431a977290bded280922 |
institution | Directory Open Access Journal |
issn | 1553-734X 1553-7358 |
language | English |
last_indexed | 2024-12-14T12:48:11Z |
publishDate | 2015-05-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS Computational Biology |
spelling | doaj.art-d8f6e9fec64d431a977290bded2809222022-12-21T23:00:44ZengPublic Library of Science (PLoS)PLoS Computational Biology1553-734X1553-73582015-05-01115e100425310.1371/journal.pcbi.1004253An Exclusion Zone for Ca2+ Channels around Docked Vesicles Explains Release Control by Multiple Channels at a CNS Synapse.Daniel KellerNorbert BabaiOlexiy KochubeyYunyun HanHenry MarkramFelix SchürmannRalf SchneggenburgerThe spatial arrangement of Ca2+ channels and vesicles remains unknown for most CNS synapses, despite of the crucial importance of this geometrical parameter for the Ca2+ control of transmitter release. At a large model synapse, the calyx of Held, transmitter release is controlled by several Ca2+ channels in a "domain overlap" mode, at least in young animals. To study the geometrical constraints of Ca2+ channel placement in domain overlap control of release, we used stochastic MCell modelling, at active zones for which the position of docked vesicles was derived from electron microscopy (EM). We found that random placement of Ca2+ channels was unable to produce high slope values between release and presynaptic Ca2+ entry, a hallmark of domain overlap, and yielded excessively large release probabilities. The simple assumption that Ca2+ channels can be located anywhere at active zones, except below a critical distance of ~ 30 nm away from docked vesicles ("exclusion zone"), rescued high slope values and low release probabilities. Alternatively, high slope values can also be obtained by placing all Ca2+ channels into a single supercluster, which however results in significantly higher heterogeneity of release probabilities. We also show experimentally that high slope values, and the sensitivity to the slow Ca2+ chelator EGTA-AM, are maintained with developmental maturation of the calyx synapse. Taken together, domain overlap control of release represents a highly organized active zone architecture in which Ca2+ channels must obey a certain distance to docked vesicles. Furthermore, domain overlap can be employed by near-mature, fast-releasing synapses.http://europepmc.org/articles/PMC4423980?pdf=render |
spellingShingle | Daniel Keller Norbert Babai Olexiy Kochubey Yunyun Han Henry Markram Felix Schürmann Ralf Schneggenburger An Exclusion Zone for Ca2+ Channels around Docked Vesicles Explains Release Control by Multiple Channels at a CNS Synapse. PLoS Computational Biology |
title | An Exclusion Zone for Ca2+ Channels around Docked Vesicles Explains Release Control by Multiple Channels at a CNS Synapse. |
title_full | An Exclusion Zone for Ca2+ Channels around Docked Vesicles Explains Release Control by Multiple Channels at a CNS Synapse. |
title_fullStr | An Exclusion Zone for Ca2+ Channels around Docked Vesicles Explains Release Control by Multiple Channels at a CNS Synapse. |
title_full_unstemmed | An Exclusion Zone for Ca2+ Channels around Docked Vesicles Explains Release Control by Multiple Channels at a CNS Synapse. |
title_short | An Exclusion Zone for Ca2+ Channels around Docked Vesicles Explains Release Control by Multiple Channels at a CNS Synapse. |
title_sort | exclusion zone for ca2 channels around docked vesicles explains release control by multiple channels at a cns synapse |
url | http://europepmc.org/articles/PMC4423980?pdf=render |
work_keys_str_mv | AT danielkeller anexclusionzoneforca2channelsarounddockedvesiclesexplainsreleasecontrolbymultiplechannelsatacnssynapse AT norbertbabai anexclusionzoneforca2channelsarounddockedvesiclesexplainsreleasecontrolbymultiplechannelsatacnssynapse AT olexiykochubey anexclusionzoneforca2channelsarounddockedvesiclesexplainsreleasecontrolbymultiplechannelsatacnssynapse AT yunyunhan anexclusionzoneforca2channelsarounddockedvesiclesexplainsreleasecontrolbymultiplechannelsatacnssynapse AT henrymarkram anexclusionzoneforca2channelsarounddockedvesiclesexplainsreleasecontrolbymultiplechannelsatacnssynapse AT felixschurmann anexclusionzoneforca2channelsarounddockedvesiclesexplainsreleasecontrolbymultiplechannelsatacnssynapse AT ralfschneggenburger anexclusionzoneforca2channelsarounddockedvesiclesexplainsreleasecontrolbymultiplechannelsatacnssynapse AT danielkeller exclusionzoneforca2channelsarounddockedvesiclesexplainsreleasecontrolbymultiplechannelsatacnssynapse AT norbertbabai exclusionzoneforca2channelsarounddockedvesiclesexplainsreleasecontrolbymultiplechannelsatacnssynapse AT olexiykochubey exclusionzoneforca2channelsarounddockedvesiclesexplainsreleasecontrolbymultiplechannelsatacnssynapse AT yunyunhan exclusionzoneforca2channelsarounddockedvesiclesexplainsreleasecontrolbymultiplechannelsatacnssynapse AT henrymarkram exclusionzoneforca2channelsarounddockedvesiclesexplainsreleasecontrolbymultiplechannelsatacnssynapse AT felixschurmann exclusionzoneforca2channelsarounddockedvesiclesexplainsreleasecontrolbymultiplechannelsatacnssynapse AT ralfschneggenburger exclusionzoneforca2channelsarounddockedvesiclesexplainsreleasecontrolbymultiplechannelsatacnssynapse |