Aerosol Parameters Retrieval From TROPOMI/S5P Using Physics-Based Neural Networks

In this article, we present three algorithms for aerosol parameters retrieval from TROPOspheric Monitoring Instrument measurements in the <inline-formula><tex-math notation="LaTeX">$\text {O}_{2}$</tex-math></inline-formula> A-band. These algorithms use neural netwo...

Full description

Bibliographic Details
Main Authors: Lanlan Rao, Jian Xu, Dmitry S. Efremenko, Diego G. Loyola, Adrian Doicu
Format: Article
Language:English
Published: IEEE 2022-01-01
Series:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9851509/
_version_ 1811308712476803072
author Lanlan Rao
Jian Xu
Dmitry S. Efremenko
Diego G. Loyola
Adrian Doicu
author_facet Lanlan Rao
Jian Xu
Dmitry S. Efremenko
Diego G. Loyola
Adrian Doicu
author_sort Lanlan Rao
collection DOAJ
description In this article, we present three algorithms for aerosol parameters retrieval from TROPOspheric Monitoring Instrument measurements in the <inline-formula><tex-math notation="LaTeX">$\text {O}_{2}$</tex-math></inline-formula> A-band. These algorithms use neural networks 1) to emulate the radiative transfer model and a Bayesian approach to solve the inverse problem, 2) to learn the inverse model from the synthetic radiances, and 3) to learn the inverse model from the principal-component transform of synthetic radiances. The training process is based on full-physics radiative transfer simulations. The accuracy and efficiency of the neural network based retrieval algorithms are analyzed with synthetic and real data.
first_indexed 2024-04-13T09:28:12Z
format Article
id doaj.art-d8fc6147e68541f3be53e4ba8c399396
institution Directory Open Access Journal
issn 2151-1535
language English
last_indexed 2024-04-13T09:28:12Z
publishDate 2022-01-01
publisher IEEE
record_format Article
series IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
spelling doaj.art-d8fc6147e68541f3be53e4ba8c3993962022-12-22T02:52:22ZengIEEEIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing2151-15352022-01-01156473648410.1109/JSTARS.2022.31968439851509Aerosol Parameters Retrieval From TROPOMI/S5P Using Physics-Based Neural NetworksLanlan Rao0https://orcid.org/0000-0003-4439-0496Jian Xu1https://orcid.org/0000-0003-2348-125XDmitry S. Efremenko2https://orcid.org/0000-0002-7449-5072Diego G. Loyola3https://orcid.org/0000-0002-8547-9350Adrian Doicu4Remote Sensing Technology Institute, German Aerospace Center (DLR), Oberpfaffenhofen, GermanyNational Space Science Center, Chinese Academy of Sciences, Beijing, ChinaRemote Sensing Technology Institute, German Aerospace Center (DLR), Oberpfaffenhofen, GermanyRemote Sensing Technology Institute, German Aerospace Center (DLR), Oberpfaffenhofen, GermanyRemote Sensing Technology Institute, German Aerospace Center (DLR), Oberpfaffenhofen, GermanyIn this article, we present three algorithms for aerosol parameters retrieval from TROPOspheric Monitoring Instrument measurements in the <inline-formula><tex-math notation="LaTeX">$\text {O}_{2}$</tex-math></inline-formula> A-band. These algorithms use neural networks 1) to emulate the radiative transfer model and a Bayesian approach to solve the inverse problem, 2) to learn the inverse model from the synthetic radiances, and 3) to learn the inverse model from the principal-component transform of synthetic radiances. The training process is based on full-physics radiative transfer simulations. The accuracy and efficiency of the neural network based retrieval algorithms are analyzed with synthetic and real data.https://ieeexplore.ieee.org/document/9851509/Aerosol information retrievalneural networksTROPOspheric Monitoring Instrument/Sentinel-5 Precursor (TROPOMI/S5P)
spellingShingle Lanlan Rao
Jian Xu
Dmitry S. Efremenko
Diego G. Loyola
Adrian Doicu
Aerosol Parameters Retrieval From TROPOMI/S5P Using Physics-Based Neural Networks
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Aerosol information retrieval
neural networks
TROPOspheric Monitoring Instrument/Sentinel-5 Precursor (TROPOMI/S5P)
title Aerosol Parameters Retrieval From TROPOMI/S5P Using Physics-Based Neural Networks
title_full Aerosol Parameters Retrieval From TROPOMI/S5P Using Physics-Based Neural Networks
title_fullStr Aerosol Parameters Retrieval From TROPOMI/S5P Using Physics-Based Neural Networks
title_full_unstemmed Aerosol Parameters Retrieval From TROPOMI/S5P Using Physics-Based Neural Networks
title_short Aerosol Parameters Retrieval From TROPOMI/S5P Using Physics-Based Neural Networks
title_sort aerosol parameters retrieval from tropomi s5p using physics based neural networks
topic Aerosol information retrieval
neural networks
TROPOspheric Monitoring Instrument/Sentinel-5 Precursor (TROPOMI/S5P)
url https://ieeexplore.ieee.org/document/9851509/
work_keys_str_mv AT lanlanrao aerosolparametersretrievalfromtropomis5pusingphysicsbasedneuralnetworks
AT jianxu aerosolparametersretrievalfromtropomis5pusingphysicsbasedneuralnetworks
AT dmitrysefremenko aerosolparametersretrievalfromtropomis5pusingphysicsbasedneuralnetworks
AT diegogloyola aerosolparametersretrievalfromtropomis5pusingphysicsbasedneuralnetworks
AT adriandoicu aerosolparametersretrievalfromtropomis5pusingphysicsbasedneuralnetworks