Features of Heat Treatment the Ti-6Al-4V GTD Blades Manufactured by DLD Additive Technology

Additive manufacturing of titanium alloys is one of the fastest growing areas of 3D metal printing. The use of AM methods for parts production in the aviation industry is especially promising. During the deposition of products with differently sized cross-sections, the thermal history changes, which...

Full description

Bibliographic Details
Main Authors: Marina Gushchina, Gleb Turichin, Olga Klimova-Korsmik, Konstantin Babkin, Lyubov Maggeramova
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/14/15/4159
Description
Summary:Additive manufacturing of titanium alloys is one of the fastest growing areas of 3D metal printing. The use of AM methods for parts production in the aviation industry is especially promising. During the deposition of products with differently sized cross-sections, the thermal history changes, which leads to non-uniformity of the structure and properties. Such heterogeneity can lead to failure of the product during operation. The structure of deposited parts, depending on the thermal cycle, may consist of α’, α + α’ + β’, and α + β in different ratios. This problem can be solved by using heat treatment (HT). This paper presents research aimed towards the determination of optimal heat treatment parameters that allows the reception of the uniform formation of properties in the after-treatment state, regardless of the initial structure and properties, using the example of a deposited Ti-6Al-4V gas turbine blade.
ISSN:1996-1944