Going, going, gone: characterizing the time-course of congruency sequence effects

Performance on traditional selective attention tasks, like the Stroop and flanker protocols, is subject to modulation by trial history, whereby the magnitude of congruency (or conflict) effects is often found to decrease following an incongruent trial compared to a congruent one. These ‘congruency s...

Full description

Bibliographic Details
Main Authors: Tobias eEgner, Sora eEly, Jack eGrinband
Format: Article
Language:English
Published: Frontiers Media S.A. 2010-09-01
Series:Frontiers in Psychology
Subjects:
Online Access:http://journal.frontiersin.org/Journal/10.3389/fpsyg.2010.00154/full
Description
Summary:Performance on traditional selective attention tasks, like the Stroop and flanker protocols, is subject to modulation by trial history, whereby the magnitude of congruency (or conflict) effects is often found to decrease following an incongruent trial compared to a congruent one. These ‘congruency sequence effects’ (CSEs) typically appear to reflect a mesh of memory- and attention-based processes. The current study aimed to shed new light on the nature of the attention-based contribution to CSEs, by characterizing the shape of the CSE time-course while controlling for mnemonic influences. Existing attention-based accounts of CSEs are either ambiguous in their predictions of CSE time-courses, or predict CSEs to persist or grow over the post-stimulus/response interval in anticipation of an upcoming stimulus. We gauged CSE time-courses by systematically varying inter-stimulus (Experiment 1) and response-to-stimulus (Experiment 2) intervals across a wide temporal range, in a face-word Stroop task. In spite of a an exponential increase in the likelihood of stimulus appearance with increasing interval duration (i.e., an exponential hazard function), results from both experiments showed CSEs to be most pronounced at the shortest intervals, to quickly decay in magnitude with increasing interval length, and to be absent at longer intervals. These data refute the idea that attentional contributions to CSEs remain static over post-stimulus/response intervals and are incompatible with the notion that CSEs reflect expectation-guided preparatory biasing in anticipation of a forthcoming stimulus. The data are compatible, however, with the notion that attentional contributions to CSEs reflect a short-lived, phasic enhancement of attentional set in reaction to processing conflict.
ISSN:1664-1078