Blow-up phenomena and lifespan for a quasi-linear pseudo-parabolic equation at arbitrary initial energy level

Abstract In this paper, we continue to study the initial boundary value problem of the quasi-linear pseudo-parabolic equation ut−△ut−△u−div(|∇u|2q∇u)=up $$ u_{t}-\triangle u_{t}-\triangle u-\operatorname{div}\bigl(| \nabla u|^{2q}\nabla u\bigr)=u^{p} $$ which was studied by Peng et al. (Appl. Math....

Full description

Bibliographic Details
Main Authors: Gongwei Liu, Ruimin Zhao
Format: Article
Language:English
Published: SpringerOpen 2018-10-01
Series:Boundary Value Problems
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13661-018-1079-7
_version_ 1819210408579301376
author Gongwei Liu
Ruimin Zhao
author_facet Gongwei Liu
Ruimin Zhao
author_sort Gongwei Liu
collection DOAJ
description Abstract In this paper, we continue to study the initial boundary value problem of the quasi-linear pseudo-parabolic equation ut−△ut−△u−div(|∇u|2q∇u)=up $$ u_{t}-\triangle u_{t}-\triangle u-\operatorname{div}\bigl(| \nabla u|^{2q}\nabla u\bigr)=u^{p} $$ which was studied by Peng et al. (Appl. Math. Lett. 56:17–22, 2016), where the blow-up phenomena and the lifespan for the initial energy J(u0)<0 $J(u_{0})<0$ were obtained. We establish the finite time blow-up of the solution for the initial data at arbitrary energy level and the lifespan of the blow-up solution. Furthermore, as a product, we obtain the blow-up rate and refine the lifespan when J(u0)<0 $J(u_{0})<0$.
first_indexed 2024-12-23T06:10:42Z
format Article
id doaj.art-d933bb387876460c9b8ee8ead65d8c6f
institution Directory Open Access Journal
issn 1687-2770
language English
last_indexed 2024-12-23T06:10:42Z
publishDate 2018-10-01
publisher SpringerOpen
record_format Article
series Boundary Value Problems
spelling doaj.art-d933bb387876460c9b8ee8ead65d8c6f2022-12-21T17:57:27ZengSpringerOpenBoundary Value Problems1687-27702018-10-012018111010.1186/s13661-018-1079-7Blow-up phenomena and lifespan for a quasi-linear pseudo-parabolic equation at arbitrary initial energy levelGongwei Liu0Ruimin Zhao1College of Science, Henan University of TechnologyCollege of Science, Henan University of TechnologyAbstract In this paper, we continue to study the initial boundary value problem of the quasi-linear pseudo-parabolic equation ut−△ut−△u−div(|∇u|2q∇u)=up $$ u_{t}-\triangle u_{t}-\triangle u-\operatorname{div}\bigl(| \nabla u|^{2q}\nabla u\bigr)=u^{p} $$ which was studied by Peng et al. (Appl. Math. Lett. 56:17–22, 2016), where the blow-up phenomena and the lifespan for the initial energy J(u0)<0 $J(u_{0})<0$ were obtained. We establish the finite time blow-up of the solution for the initial data at arbitrary energy level and the lifespan of the blow-up solution. Furthermore, as a product, we obtain the blow-up rate and refine the lifespan when J(u0)<0 $J(u_{0})<0$.http://link.springer.com/article/10.1186/s13661-018-1079-7Blow-upLifespanBlow-up rateQuasi-linear pseudo-parabolic equation
spellingShingle Gongwei Liu
Ruimin Zhao
Blow-up phenomena and lifespan for a quasi-linear pseudo-parabolic equation at arbitrary initial energy level
Boundary Value Problems
Blow-up
Lifespan
Blow-up rate
Quasi-linear pseudo-parabolic equation
title Blow-up phenomena and lifespan for a quasi-linear pseudo-parabolic equation at arbitrary initial energy level
title_full Blow-up phenomena and lifespan for a quasi-linear pseudo-parabolic equation at arbitrary initial energy level
title_fullStr Blow-up phenomena and lifespan for a quasi-linear pseudo-parabolic equation at arbitrary initial energy level
title_full_unstemmed Blow-up phenomena and lifespan for a quasi-linear pseudo-parabolic equation at arbitrary initial energy level
title_short Blow-up phenomena and lifespan for a quasi-linear pseudo-parabolic equation at arbitrary initial energy level
title_sort blow up phenomena and lifespan for a quasi linear pseudo parabolic equation at arbitrary initial energy level
topic Blow-up
Lifespan
Blow-up rate
Quasi-linear pseudo-parabolic equation
url http://link.springer.com/article/10.1186/s13661-018-1079-7
work_keys_str_mv AT gongweiliu blowupphenomenaandlifespanforaquasilinearpseudoparabolicequationatarbitraryinitialenergylevel
AT ruiminzhao blowupphenomenaandlifespanforaquasilinearpseudoparabolicequationatarbitraryinitialenergylevel