Now you see it, now you don't: a case study of ephemeral snowpacks and soil moisture response in the Great Basin, USA
<p>Ephemeral snowpacks, or those that persist for < 60 continuous days, are challenging to observe and model because snow accumulation and ablation occur during the same season. This has left ephemeral snow understudied, despite its widespread extent. Using 328 site years from the...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2018-09-01
|
Series: | Hydrology and Earth System Sciences |
Online Access: | https://www.hydrol-earth-syst-sci.net/22/4891/2018/hess-22-4891-2018.pdf |
_version_ | 1817984518046351360 |
---|---|
author | R. Petersky A. Harpold A. Harpold A. Harpold |
author_facet | R. Petersky A. Harpold A. Harpold A. Harpold |
author_sort | R. Petersky |
collection | DOAJ |
description | <p>Ephemeral snowpacks, or those that persist for < 60 continuous days, are
challenging to observe and model because snow accumulation and ablation occur
during the same season. This has left ephemeral snow understudied, despite
its widespread extent. Using 328 site years from the Great Basin, we show
that ephemeral snowmelt causes a 70-days-earlier soil moisture response than
seasonal snowmelt. In addition, deep soil moisture response was more variable
in areas with seasonal snowmelt. To understand Great Basin snow distribution,
we used MODIS and Snow Data Assimilation System (SNODAS) data to map snow
extent. Estimates of maximum continuous snow cover duration from SNODAS
consistently overestimated MODIS observations by > 25 days in the lowest
( < 1500 m) and highest ( > 2500 m) elevations. During this time period
snowpack was highly variable. The maximum seasonal snow cover during water
years 2005–2014 was 64 % in 2010 and at a minimum of 24 % in 2014.
We found that elevation had a strong control on snow ephemerality, and nearly
all snowpacks over 2500 m were seasonal except those on south-facing slopes.
Additionally, we used SNODAS-derived estimates of solid and liquid
precipitation, melt, sublimation, and blowing snow sublimation to define snow
ephemerality mechanisms. In warm years, the Great Basin shifts to ephemerally
dominant as the rain–snow transition increases in elevation. Given that snow
ephemerality is expected to increase as a consequence of climate change,
physics-based modeling is needed that can account for the complex energetics
of shallow snowpacks in complex terrain. These modeling efforts will need to
be supported by field observations of mass and energy and linked to finer
remote sensing snow products in order to track ephemeral snow dynamics.</p> |
first_indexed | 2024-04-13T23:46:39Z |
format | Article |
id | doaj.art-d9378cfc74d3423e9040d0add81b60a4 |
institution | Directory Open Access Journal |
issn | 1027-5606 1607-7938 |
language | English |
last_indexed | 2024-04-13T23:46:39Z |
publishDate | 2018-09-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Hydrology and Earth System Sciences |
spelling | doaj.art-d9378cfc74d3423e9040d0add81b60a42022-12-22T02:24:19ZengCopernicus PublicationsHydrology and Earth System Sciences1027-56061607-79382018-09-01224891490610.5194/hess-22-4891-2018Now you see it, now you don't: a case study of ephemeral snowpacks and soil moisture response in the Great Basin, USAR. Petersky0A. Harpold1A. Harpold2A. Harpold3Graduate Program of Hydrologic Sciences, University of Nevada, 1664 N Virginia St., Reno, NV 89557, USAGraduate Program of Hydrologic Sciences, University of Nevada, 1664 N Virginia St., Reno, NV 89557, USANatural Resources Environmental Science Department, University of Nevada, 1664 N Virginia St., Reno, NV 89557, USAGlobal Water Center, University of Nevada, 1664 N Virginia St., Reno, NV 89557, USA<p>Ephemeral snowpacks, or those that persist for < 60 continuous days, are challenging to observe and model because snow accumulation and ablation occur during the same season. This has left ephemeral snow understudied, despite its widespread extent. Using 328 site years from the Great Basin, we show that ephemeral snowmelt causes a 70-days-earlier soil moisture response than seasonal snowmelt. In addition, deep soil moisture response was more variable in areas with seasonal snowmelt. To understand Great Basin snow distribution, we used MODIS and Snow Data Assimilation System (SNODAS) data to map snow extent. Estimates of maximum continuous snow cover duration from SNODAS consistently overestimated MODIS observations by > 25 days in the lowest ( < 1500 m) and highest ( > 2500 m) elevations. During this time period snowpack was highly variable. The maximum seasonal snow cover during water years 2005–2014 was 64 % in 2010 and at a minimum of 24 % in 2014. We found that elevation had a strong control on snow ephemerality, and nearly all snowpacks over 2500 m were seasonal except those on south-facing slopes. Additionally, we used SNODAS-derived estimates of solid and liquid precipitation, melt, sublimation, and blowing snow sublimation to define snow ephemerality mechanisms. In warm years, the Great Basin shifts to ephemerally dominant as the rain–snow transition increases in elevation. Given that snow ephemerality is expected to increase as a consequence of climate change, physics-based modeling is needed that can account for the complex energetics of shallow snowpacks in complex terrain. These modeling efforts will need to be supported by field observations of mass and energy and linked to finer remote sensing snow products in order to track ephemeral snow dynamics.</p>https://www.hydrol-earth-syst-sci.net/22/4891/2018/hess-22-4891-2018.pdf |
spellingShingle | R. Petersky A. Harpold A. Harpold A. Harpold Now you see it, now you don't: a case study of ephemeral snowpacks and soil moisture response in the Great Basin, USA Hydrology and Earth System Sciences |
title | Now you see it, now you don't: a case study of ephemeral snowpacks and soil moisture response in the Great Basin, USA |
title_full | Now you see it, now you don't: a case study of ephemeral snowpacks and soil moisture response in the Great Basin, USA |
title_fullStr | Now you see it, now you don't: a case study of ephemeral snowpacks and soil moisture response in the Great Basin, USA |
title_full_unstemmed | Now you see it, now you don't: a case study of ephemeral snowpacks and soil moisture response in the Great Basin, USA |
title_short | Now you see it, now you don't: a case study of ephemeral snowpacks and soil moisture response in the Great Basin, USA |
title_sort | now you see it now you don t a case study of ephemeral snowpacks and soil moisture response in the great basin usa |
url | https://www.hydrol-earth-syst-sci.net/22/4891/2018/hess-22-4891-2018.pdf |
work_keys_str_mv | AT rpetersky nowyouseeitnowyoudontacasestudyofephemeralsnowpacksandsoilmoistureresponseinthegreatbasinusa AT aharpold nowyouseeitnowyoudontacasestudyofephemeralsnowpacksandsoilmoistureresponseinthegreatbasinusa AT aharpold nowyouseeitnowyoudontacasestudyofephemeralsnowpacksandsoilmoistureresponseinthegreatbasinusa AT aharpold nowyouseeitnowyoudontacasestudyofephemeralsnowpacksandsoilmoistureresponseinthegreatbasinusa |