Hyers-Ulam-Rassias stability of cubic functional equations in fuzzy normed spaces

In this paper, two cubic functional equations are shown to be equivalent, Hyers-Ulam-Rassias stability of them is proved under some suitable conditions by the fixed point method in fuzzy normed spaces. Moreover, the fuzzy continuity of the solution of the functional equation is discussed.

Bibliographic Details
Main Authors: Lingxiao Lu, Jianrong Wu
Format: Article
Language:English
Published: AIMS Press 2022-03-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.2022478?viewType=HTML
Description
Summary:In this paper, two cubic functional equations are shown to be equivalent, Hyers-Ulam-Rassias stability of them is proved under some suitable conditions by the fixed point method in fuzzy normed spaces. Moreover, the fuzzy continuity of the solution of the functional equation is discussed.
ISSN:2473-6988