Genetic sex separation of the malaria vector, <it>Anopheles arabiensis,</it> by exposing eggs to dieldrin
<p>Abstract</p> <p>Background</p> <p>The sterile insect technique (SIT) has been used with success for suppressing or eliminating important insect pests of agricultural or veterinary importance. In order to develop SIT for mosquitoes, female elimination prior to release...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2012-06-01
|
Series: | Malaria Journal |
Subjects: |
_version_ | 1811276304514809856 |
---|---|
author | Yamada Hanano Benedict Mark Q Malcolm Colin A Oliva Clelia F Soliban Sharon M Gilles Jeremie RL |
author_facet | Yamada Hanano Benedict Mark Q Malcolm Colin A Oliva Clelia F Soliban Sharon M Gilles Jeremie RL |
author_sort | Yamada Hanano |
collection | DOAJ |
description | <p>Abstract</p> <p>Background</p> <p>The sterile insect technique (SIT) has been used with success for suppressing or eliminating important insect pests of agricultural or veterinary importance. In order to develop SIT for mosquitoes, female elimination prior to release is essential as they are the disease-transmitting sex. A genetic sexing strain (GSS) of <it>Anopheles arabiensis</it> was created based on resistance to dieldrin, and methods of sex separation at the egg stage were developed. The use of this strain for SIT will require sexually sterile males: useful radiation doses for this purpose were determined for pupae and adults.</p> <p>Methods</p> <p>For the creation of the sexing strain, dieldrin-resistant males were irradiated with 40 Gy using a <sup>60</sup>Co source and were subsequently crossed to homozygous susceptible virgin females. Individual families were screened for semi-sterility and for male resistance to dieldrin. For sex separation, eggs of a resulting GSS, ANO IPCL1, were exposed to varying concentrations of dieldrin for different durations. Percent hatch, larval survival, and male and female emergence were recorded. Radiation induced sterility was determined following adult and pupa exposure to gamma rays at 0–105 Gy. Mortality induced by dieldrin treatment, and levels of sterility post radiation were investigated.</p> <p>Results</p> <p>ANO IPCL1 contains a complex chromosome aberration that pseudo-links the male-determining Y chromosome and dieldrin resistance, conferring high natural semi-sterility. Exposure of eggs to 2, 3, and 4 ppm dieldrin solutions resulted in complete female elimination without a significant decrease of male emergence compared to the controls. A dose of 75 Gy reduced the fertility to 3.8 and 6.9% when males were irradiated as pupae or adults respectively, but the proportions of progeny of these males reaching adulthood were 0.6 and 1.5% respectively</p> <p>Conclusion</p> <p>The GSS ANO IPCL1 was shown to be a suitable strain for further testing for SIT though high semi-sterility is a disadvantage for mass rearing.</p> |
first_indexed | 2024-04-12T23:55:12Z |
format | Article |
id | doaj.art-d95abf08e5d4461a900aa5301e27e4dd |
institution | Directory Open Access Journal |
issn | 1475-2875 |
language | English |
last_indexed | 2024-04-12T23:55:12Z |
publishDate | 2012-06-01 |
publisher | BMC |
record_format | Article |
series | Malaria Journal |
spelling | doaj.art-d95abf08e5d4461a900aa5301e27e4dd2022-12-22T03:11:34ZengBMCMalaria Journal1475-28752012-06-0111120810.1186/1475-2875-11-208Genetic sex separation of the malaria vector, <it>Anopheles arabiensis,</it> by exposing eggs to dieldrinYamada HananoBenedict Mark QMalcolm Colin AOliva Clelia FSoliban Sharon MGilles Jeremie RL<p>Abstract</p> <p>Background</p> <p>The sterile insect technique (SIT) has been used with success for suppressing or eliminating important insect pests of agricultural or veterinary importance. In order to develop SIT for mosquitoes, female elimination prior to release is essential as they are the disease-transmitting sex. A genetic sexing strain (GSS) of <it>Anopheles arabiensis</it> was created based on resistance to dieldrin, and methods of sex separation at the egg stage were developed. The use of this strain for SIT will require sexually sterile males: useful radiation doses for this purpose were determined for pupae and adults.</p> <p>Methods</p> <p>For the creation of the sexing strain, dieldrin-resistant males were irradiated with 40 Gy using a <sup>60</sup>Co source and were subsequently crossed to homozygous susceptible virgin females. Individual families were screened for semi-sterility and for male resistance to dieldrin. For sex separation, eggs of a resulting GSS, ANO IPCL1, were exposed to varying concentrations of dieldrin for different durations. Percent hatch, larval survival, and male and female emergence were recorded. Radiation induced sterility was determined following adult and pupa exposure to gamma rays at 0–105 Gy. Mortality induced by dieldrin treatment, and levels of sterility post radiation were investigated.</p> <p>Results</p> <p>ANO IPCL1 contains a complex chromosome aberration that pseudo-links the male-determining Y chromosome and dieldrin resistance, conferring high natural semi-sterility. Exposure of eggs to 2, 3, and 4 ppm dieldrin solutions resulted in complete female elimination without a significant decrease of male emergence compared to the controls. A dose of 75 Gy reduced the fertility to 3.8 and 6.9% when males were irradiated as pupae or adults respectively, but the proportions of progeny of these males reaching adulthood were 0.6 and 1.5% respectively</p> <p>Conclusion</p> <p>The GSS ANO IPCL1 was shown to be a suitable strain for further testing for SIT though high semi-sterility is a disadvantage for mass rearing.</p>Genetic sexing<it>Anopheles arabiensis</it>Sterile insect techniqueDieldrin resistanceSterility |
spellingShingle | Yamada Hanano Benedict Mark Q Malcolm Colin A Oliva Clelia F Soliban Sharon M Gilles Jeremie RL Genetic sex separation of the malaria vector, <it>Anopheles arabiensis,</it> by exposing eggs to dieldrin Malaria Journal Genetic sexing <it>Anopheles arabiensis</it> Sterile insect technique Dieldrin resistance Sterility |
title | Genetic sex separation of the malaria vector, <it>Anopheles arabiensis,</it> by exposing eggs to dieldrin |
title_full | Genetic sex separation of the malaria vector, <it>Anopheles arabiensis,</it> by exposing eggs to dieldrin |
title_fullStr | Genetic sex separation of the malaria vector, <it>Anopheles arabiensis,</it> by exposing eggs to dieldrin |
title_full_unstemmed | Genetic sex separation of the malaria vector, <it>Anopheles arabiensis,</it> by exposing eggs to dieldrin |
title_short | Genetic sex separation of the malaria vector, <it>Anopheles arabiensis,</it> by exposing eggs to dieldrin |
title_sort | genetic sex separation of the malaria vector it anopheles arabiensis it by exposing eggs to dieldrin |
topic | Genetic sexing <it>Anopheles arabiensis</it> Sterile insect technique Dieldrin resistance Sterility |
work_keys_str_mv | AT yamadahanano geneticsexseparationofthemalariavectoritanophelesarabiensisitbyexposingeggstodieldrin AT benedictmarkq geneticsexseparationofthemalariavectoritanophelesarabiensisitbyexposingeggstodieldrin AT malcolmcolina geneticsexseparationofthemalariavectoritanophelesarabiensisitbyexposingeggstodieldrin AT olivacleliaf geneticsexseparationofthemalariavectoritanophelesarabiensisitbyexposingeggstodieldrin AT solibansharonm geneticsexseparationofthemalariavectoritanophelesarabiensisitbyexposingeggstodieldrin AT gillesjeremierl geneticsexseparationofthemalariavectoritanophelesarabiensisitbyexposingeggstodieldrin |