Generalized global symmetries and holography

We study the holographic duals of four-dimensional field theories with 1-form global symmetries, both discrete and continuous. Such higher-form global symmetries are associated with antisymmetric tensor gauge fields in the bulk. Various different realizations are possible: we demonstrate that a M...

Full description

Bibliographic Details
Main Author: Diego M. Hofman, Nabil Iqbal
Format: Article
Language:English
Published: SciPost 2018-01-01
Series:SciPost Physics
Online Access:https://scipost.org/SciPostPhys.4.1.005
Description
Summary:We study the holographic duals of four-dimensional field theories with 1-form global symmetries, both discrete and continuous. Such higher-form global symmetries are associated with antisymmetric tensor gauge fields in the bulk. Various different realizations are possible: we demonstrate that a Maxwell action for the bulk antisymmetric gauge field results in a non-conformal field theory with a marginally running double-trace coupling. We explore its hydrodynamic behavior at finite temperature and make contact with recent symmetry-based formulations of magnetohydrodynamics. We also argue that discrete global symmetries on the boundary are dual to discrete gauge theories in the bulk. Such gauge theories have a bulk Chern-Simons description: we clarify the conventional 0-form case and work out the 1-form case. Depending on boundary conditions, such discrete symmetries may be embedded in continuous higher-form symmetries that are spontaneously broken. We study the resulting boundary Goldstone mode, which in the 1-form case may be thought of as a boundary photon. Our results clarify how the global form of the field theory gauge group is encoded in holography. Finally, we study the interplay of Maxwell and Chern-Simons terms put together. We work out the operator content and demonstrate the existence of new backreacted anisotropic scaling solutions that carry higher-form charge.
ISSN:2542-4653