Deconvolution of bulk blood eQTL effects into immune cell subpopulations

Abstract Background Expression quantitative trait loci (eQTL) studies are used to interpret the function of disease-associated genetic risk factors. To date, most eQTL analyses have been conducted in bulk tissues, such as whole blood and tissue biopsies, which are likely to mask the cell type-contex...

Full description

Bibliographic Details
Main Authors: Raúl Aguirre-Gamboa, Niek de Klein, Jennifer di Tommaso, Annique Claringbould, Monique GP van der Wijst, Dylan de Vries, Harm Brugge, Roy Oelen, Urmo Võsa, Maria M. Zorro, Xiaojin Chu, Olivier B. Bakker, Zuzanna Borek, Isis Ricaño-Ponce, Patrick Deelen, Cheng-Jiang Xu, Morris Swertz, Iris Jonkers, Sebo Withoff, Irma Joosten, Serena Sanna, Vinod Kumar, Hans J. P. M. Koenen, Leo A. B. Joosten, Mihai G. Netea, Cisca Wijmenga, BIOS Consortium, Lude Franke, Yang Li
Format: Article
Language:English
Published: BMC 2020-06-01
Series:BMC Bioinformatics
Subjects:
Online Access:http://link.springer.com/article/10.1186/s12859-020-03576-5
_version_ 1811212021226536960
author Raúl Aguirre-Gamboa
Niek de Klein
Jennifer di Tommaso
Annique Claringbould
Monique GP van der Wijst
Dylan de Vries
Harm Brugge
Roy Oelen
Urmo Võsa
Maria M. Zorro
Xiaojin Chu
Olivier B. Bakker
Zuzanna Borek
Isis Ricaño-Ponce
Patrick Deelen
Cheng-Jiang Xu
Morris Swertz
Iris Jonkers
Sebo Withoff
Irma Joosten
Serena Sanna
Vinod Kumar
Hans J. P. M. Koenen
Leo A. B. Joosten
Mihai G. Netea
Cisca Wijmenga
BIOS Consortium
Lude Franke
Yang Li
author_facet Raúl Aguirre-Gamboa
Niek de Klein
Jennifer di Tommaso
Annique Claringbould
Monique GP van der Wijst
Dylan de Vries
Harm Brugge
Roy Oelen
Urmo Võsa
Maria M. Zorro
Xiaojin Chu
Olivier B. Bakker
Zuzanna Borek
Isis Ricaño-Ponce
Patrick Deelen
Cheng-Jiang Xu
Morris Swertz
Iris Jonkers
Sebo Withoff
Irma Joosten
Serena Sanna
Vinod Kumar
Hans J. P. M. Koenen
Leo A. B. Joosten
Mihai G. Netea
Cisca Wijmenga
BIOS Consortium
Lude Franke
Yang Li
author_sort Raúl Aguirre-Gamboa
collection DOAJ
description Abstract Background Expression quantitative trait loci (eQTL) studies are used to interpret the function of disease-associated genetic risk factors. To date, most eQTL analyses have been conducted in bulk tissues, such as whole blood and tissue biopsies, which are likely to mask the cell type-context of the eQTL regulatory effects. Although this context can be investigated by generating transcriptional profiles from purified cell subpopulations, current methods to do this are labor-intensive and expensive. We introduce a new method, Decon2, as a framework for estimating cell proportions using expression profiles from bulk blood samples (Decon-cell) followed by deconvolution of cell type eQTLs (Decon-eQTL). Results The estimated cell proportions from Decon-cell agree with experimental measurements across cohorts (R ≥ 0.77). Using Decon-cell, we could predict the proportions of 34 circulating cell types for 3194 samples from a population-based cohort. Next, we identified 16,362 whole-blood eQTLs and deconvoluted cell type interaction (CTi) eQTLs using the predicted cell proportions from Decon-cell. CTi eQTLs show excellent allelic directional concordance with eQTL (≥ 96–100%) and chromatin mark QTL (≥87–92%) studies that used either purified cell subpopulations or single-cell RNA-seq, outperforming the conventional interaction effect. Conclusions Decon2 provides a method to detect cell type interaction effects from bulk blood eQTLs that is useful for pinpointing the most relevant cell type for a given complex disease. Decon2 is available as an R package and Java application ( https://github.com/molgenis/systemsgenetics/tree/master/Decon2 ) and as a web tool ( www.molgenis.org/deconvolution ).
first_indexed 2024-04-12T05:21:50Z
format Article
id doaj.art-d968288a4faf422088c9b27830e918ca
institution Directory Open Access Journal
issn 1471-2105
language English
last_indexed 2024-04-12T05:21:50Z
publishDate 2020-06-01
publisher BMC
record_format Article
series BMC Bioinformatics
spelling doaj.art-d968288a4faf422088c9b27830e918ca2022-12-22T03:46:26ZengBMCBMC Bioinformatics1471-21052020-06-0121112310.1186/s12859-020-03576-5Deconvolution of bulk blood eQTL effects into immune cell subpopulationsRaúl Aguirre-Gamboa0Niek de Klein1Jennifer di Tommaso2Annique Claringbould3Monique GP van der Wijst4Dylan de Vries5Harm Brugge6Roy Oelen7Urmo Võsa8Maria M. Zorro9Xiaojin Chu10Olivier B. Bakker11Zuzanna Borek12Isis Ricaño-Ponce13Patrick Deelen14Cheng-Jiang Xu15Morris Swertz16Iris Jonkers17Sebo Withoff18Irma Joosten19Serena Sanna20Vinod Kumar21Hans J. P. M. Koenen22Leo A. B. Joosten23Mihai G. Netea24Cisca Wijmenga25BIOS ConsortiumLude Franke26Yang Li27Department of Genetics, University of Groningen, University Medical Center GroningenDepartment of Genetics, Oncode Institute, University of Groningen, University Medical Center GroningenDepartment of Genetics, University of Groningen, University Medical Center GroningenDepartment of Genetics, Oncode Institute, University of Groningen, University Medical Center GroningenDepartment of Genetics, Oncode Institute, University of Groningen, University Medical Center GroningenDepartment of Genetics, Oncode Institute, University of Groningen, University Medical Center GroningenDepartment of Genetics, Oncode Institute, University of Groningen, University Medical Center GroningenDepartment of Genetics, Oncode Institute, University of Groningen, University Medical Center GroningenDepartment of Genetics, University of Groningen, University Medical Center GroningenDepartment of Genetics, University of Groningen, University Medical Center GroningenDepartment of Genetics, University of Groningen, University Medical Center GroningenDepartment of Genetics, University of Groningen, University Medical Center GroningenDepartment of Genetics, University of Groningen, University Medical Center GroningenDepartment of Genetics, University of Groningen, University Medical Center GroningenDepartment of Genetics, Oncode Institute, University of Groningen, University Medical Center GroningenCentre for Individualised Infection Medicine (CiiM) & TWINCORE, joint ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH)Department of Genetics, University of Groningen, University Medical Center GroningenDepartment of Genetics, University of Groningen, University Medical Center GroningenDepartment of Genetics, University of Groningen, University Medical Center GroningenDepartment of Laboratory Medicine, Laboratory for Medical Immunology, Radboud University Medical CentreDepartment of Genetics, University of Groningen, University Medical Center GroningenDepartment of Genetics, University of Groningen, University Medical Center GroningenDepartment of Laboratory Medicine, Laboratory for Medical Immunology, Radboud University Medical CentreDepartment of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical CenterDepartment of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical CenterDepartment of Genetics, University of Groningen, University Medical Center GroningenDepartment of Genetics, University of Groningen, University Medical Center GroningenDepartment of Genetics, University of Groningen, University Medical Center GroningenAbstract Background Expression quantitative trait loci (eQTL) studies are used to interpret the function of disease-associated genetic risk factors. To date, most eQTL analyses have been conducted in bulk tissues, such as whole blood and tissue biopsies, which are likely to mask the cell type-context of the eQTL regulatory effects. Although this context can be investigated by generating transcriptional profiles from purified cell subpopulations, current methods to do this are labor-intensive and expensive. We introduce a new method, Decon2, as a framework for estimating cell proportions using expression profiles from bulk blood samples (Decon-cell) followed by deconvolution of cell type eQTLs (Decon-eQTL). Results The estimated cell proportions from Decon-cell agree with experimental measurements across cohorts (R ≥ 0.77). Using Decon-cell, we could predict the proportions of 34 circulating cell types for 3194 samples from a population-based cohort. Next, we identified 16,362 whole-blood eQTLs and deconvoluted cell type interaction (CTi) eQTLs using the predicted cell proportions from Decon-cell. CTi eQTLs show excellent allelic directional concordance with eQTL (≥ 96–100%) and chromatin mark QTL (≥87–92%) studies that used either purified cell subpopulations or single-cell RNA-seq, outperforming the conventional interaction effect. Conclusions Decon2 provides a method to detect cell type interaction effects from bulk blood eQTLs that is useful for pinpointing the most relevant cell type for a given complex disease. Decon2 is available as an R package and Java application ( https://github.com/molgenis/systemsgenetics/tree/master/Decon2 ) and as a web tool ( www.molgenis.org/deconvolution ).http://link.springer.com/article/10.1186/s12859-020-03576-5eQTLDeconvolutionCell typesImmune cells
spellingShingle Raúl Aguirre-Gamboa
Niek de Klein
Jennifer di Tommaso
Annique Claringbould
Monique GP van der Wijst
Dylan de Vries
Harm Brugge
Roy Oelen
Urmo Võsa
Maria M. Zorro
Xiaojin Chu
Olivier B. Bakker
Zuzanna Borek
Isis Ricaño-Ponce
Patrick Deelen
Cheng-Jiang Xu
Morris Swertz
Iris Jonkers
Sebo Withoff
Irma Joosten
Serena Sanna
Vinod Kumar
Hans J. P. M. Koenen
Leo A. B. Joosten
Mihai G. Netea
Cisca Wijmenga
BIOS Consortium
Lude Franke
Yang Li
Deconvolution of bulk blood eQTL effects into immune cell subpopulations
BMC Bioinformatics
eQTL
Deconvolution
Cell types
Immune cells
title Deconvolution of bulk blood eQTL effects into immune cell subpopulations
title_full Deconvolution of bulk blood eQTL effects into immune cell subpopulations
title_fullStr Deconvolution of bulk blood eQTL effects into immune cell subpopulations
title_full_unstemmed Deconvolution of bulk blood eQTL effects into immune cell subpopulations
title_short Deconvolution of bulk blood eQTL effects into immune cell subpopulations
title_sort deconvolution of bulk blood eqtl effects into immune cell subpopulations
topic eQTL
Deconvolution
Cell types
Immune cells
url http://link.springer.com/article/10.1186/s12859-020-03576-5
work_keys_str_mv AT raulaguirregamboa deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT niekdeklein deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT jenniferditommaso deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT anniqueclaringbould deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT moniquegpvanderwijst deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT dylandevries deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT harmbrugge deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT royoelen deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT urmovosa deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT mariamzorro deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT xiaojinchu deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT olivierbbakker deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT zuzannaborek deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT isisricanoponce deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT patrickdeelen deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT chengjiangxu deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT morrisswertz deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT irisjonkers deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT sebowithoff deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT irmajoosten deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT serenasanna deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT vinodkumar deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT hansjpmkoenen deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT leoabjoosten deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT mihaignetea deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT ciscawijmenga deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT biosconsortium deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT ludefranke deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations
AT yangli deconvolutionofbulkbloodeqtleffectsintoimmunecellsubpopulations