Architectures and complex functions of tandem riboswitches

Riboswitch architectures that involve the binding of a single ligand to a single RNA aptamer domain result in ordinary dose-response curves that require approximately a 100-fold change in ligand concentration to cover nearly the full dynamic range for gene regulation. However, by using multiple ribo...

Full description

Bibliographic Details
Main Authors: Madeline E. Sherlock, Gadareth Higgs, Diane Yu, Danielle L. Widner, Neil A. White, Narasimhan Sudarsan, Harini Sadeeshkumar, Kevin R. Perkins, Gayan Mirihana Arachchilage, Sarah N. Malkowski, Christopher G. King, Kimberly A. Harris, Glenn Gaffield, Ruben M. Atilho, Ronald R. Breaker
Format: Article
Language:English
Published: Taylor & Francis Group 2022-12-01
Series:RNA Biology
Subjects:
Online Access:http://dx.doi.org/10.1080/15476286.2022.2119017
_version_ 1797404001369587712
author Madeline E. Sherlock
Gadareth Higgs
Diane Yu
Danielle L. Widner
Neil A. White
Narasimhan Sudarsan
Harini Sadeeshkumar
Kevin R. Perkins
Gayan Mirihana Arachchilage
Sarah N. Malkowski
Christopher G. King
Kimberly A. Harris
Glenn Gaffield
Ruben M. Atilho
Ronald R. Breaker
author_facet Madeline E. Sherlock
Gadareth Higgs
Diane Yu
Danielle L. Widner
Neil A. White
Narasimhan Sudarsan
Harini Sadeeshkumar
Kevin R. Perkins
Gayan Mirihana Arachchilage
Sarah N. Malkowski
Christopher G. King
Kimberly A. Harris
Glenn Gaffield
Ruben M. Atilho
Ronald R. Breaker
author_sort Madeline E. Sherlock
collection DOAJ
description Riboswitch architectures that involve the binding of a single ligand to a single RNA aptamer domain result in ordinary dose-response curves that require approximately a 100-fold change in ligand concentration to cover nearly the full dynamic range for gene regulation. However, by using multiple riboswitches or aptamer domains in tandem, these ligand-sensing structures can produce additional, complex gene control outcomes. In the current study, we have computationally searched for tandem riboswitch architectures in bacteria to provide a more complete understanding of the diverse biological and biochemical functions of gene control elements that are made exclusively of RNA. Numerous different arrangements of tandem homologous riboswitch architectures are exploited by bacteria to create more ‘digital’ gene control devices, which operate over a narrower ligand concentration range. Also, two heterologous riboswitch aptamers are sometimes employed to create two-input Boolean logic gates with various types of genetic outputs. These findings illustrate the sophisticated genetic decisions that can be made by using molecular sensors and switches based only on RNA.
first_indexed 2024-03-09T02:46:47Z
format Article
id doaj.art-d97719da4d29432b890e0c781466c70c
institution Directory Open Access Journal
issn 1547-6286
1555-8584
language English
last_indexed 2024-03-09T02:46:47Z
publishDate 2022-12-01
publisher Taylor & Francis Group
record_format Article
series RNA Biology
spelling doaj.art-d97719da4d29432b890e0c781466c70c2023-12-05T16:09:51ZengTaylor & Francis GroupRNA Biology1547-62861555-85842022-12-011911059107610.1080/15476286.2022.21190172119017Architectures and complex functions of tandem riboswitchesMadeline E. Sherlock0Gadareth Higgs1Diane Yu2Danielle L. Widner3Neil A. White4Narasimhan Sudarsan5Harini Sadeeshkumar6Kevin R. Perkins7Gayan Mirihana Arachchilage8Sarah N. Malkowski9Christopher G. King10Kimberly A. Harris11Glenn Gaffield12Ruben M. Atilho13Ronald R. Breaker14Yale UniversityYale UniversityYale UniversityYale UniversityYale UniversityYale UniversityYale UniversityYale UniversityYale UniversityYale UniversityYale UniversityYale UniversityYale UniversityYale UniversityYale UniversityRiboswitch architectures that involve the binding of a single ligand to a single RNA aptamer domain result in ordinary dose-response curves that require approximately a 100-fold change in ligand concentration to cover nearly the full dynamic range for gene regulation. However, by using multiple riboswitches or aptamer domains in tandem, these ligand-sensing structures can produce additional, complex gene control outcomes. In the current study, we have computationally searched for tandem riboswitch architectures in bacteria to provide a more complete understanding of the diverse biological and biochemical functions of gene control elements that are made exclusively of RNA. Numerous different arrangements of tandem homologous riboswitch architectures are exploited by bacteria to create more ‘digital’ gene control devices, which operate over a narrower ligand concentration range. Also, two heterologous riboswitch aptamers are sometimes employed to create two-input Boolean logic gates with various types of genetic outputs. These findings illustrate the sophisticated genetic decisions that can be made by using molecular sensors and switches based only on RNA.http://dx.doi.org/10.1080/15476286.2022.2119017aptamernoncoding rnagene regulationlogic gatetranscription controltranslation control
spellingShingle Madeline E. Sherlock
Gadareth Higgs
Diane Yu
Danielle L. Widner
Neil A. White
Narasimhan Sudarsan
Harini Sadeeshkumar
Kevin R. Perkins
Gayan Mirihana Arachchilage
Sarah N. Malkowski
Christopher G. King
Kimberly A. Harris
Glenn Gaffield
Ruben M. Atilho
Ronald R. Breaker
Architectures and complex functions of tandem riboswitches
RNA Biology
aptamer
noncoding rna
gene regulation
logic gate
transcription control
translation control
title Architectures and complex functions of tandem riboswitches
title_full Architectures and complex functions of tandem riboswitches
title_fullStr Architectures and complex functions of tandem riboswitches
title_full_unstemmed Architectures and complex functions of tandem riboswitches
title_short Architectures and complex functions of tandem riboswitches
title_sort architectures and complex functions of tandem riboswitches
topic aptamer
noncoding rna
gene regulation
logic gate
transcription control
translation control
url http://dx.doi.org/10.1080/15476286.2022.2119017
work_keys_str_mv AT madelineesherlock architecturesandcomplexfunctionsoftandemriboswitches
AT gadarethhiggs architecturesandcomplexfunctionsoftandemriboswitches
AT dianeyu architecturesandcomplexfunctionsoftandemriboswitches
AT daniellelwidner architecturesandcomplexfunctionsoftandemriboswitches
AT neilawhite architecturesandcomplexfunctionsoftandemriboswitches
AT narasimhansudarsan architecturesandcomplexfunctionsoftandemriboswitches
AT harinisadeeshkumar architecturesandcomplexfunctionsoftandemriboswitches
AT kevinrperkins architecturesandcomplexfunctionsoftandemriboswitches
AT gayanmirihanaarachchilage architecturesandcomplexfunctionsoftandemriboswitches
AT sarahnmalkowski architecturesandcomplexfunctionsoftandemriboswitches
AT christophergking architecturesandcomplexfunctionsoftandemriboswitches
AT kimberlyaharris architecturesandcomplexfunctionsoftandemriboswitches
AT glenngaffield architecturesandcomplexfunctionsoftandemriboswitches
AT rubenmatilho architecturesandcomplexfunctionsoftandemriboswitches
AT ronaldrbreaker architecturesandcomplexfunctionsoftandemriboswitches