Summary: | Forest roads are an essential facility for sustainable forest management and protection. With advances in survey technology, such as Light Detection and Ranging, forest road maps with greater accuracy and resolution can be produced. This study produced a 3D map for establishment of a forest road inventory using a Mobile Laser Scanning (MLS) device mounted on a vehicle in four study forest roads in Korea, in order to review its precision, accuracy and efficiency based on comparisons with mapping using Total Station (TS) and Global Navigation Satellite System (GNSS). We counted the points that consist of the cloud data of the maps to determine the degree of precision density, and then compared this with 50 points at 20-m intervals on the centerlines bisecting the widths of the study forest roads. Then, we evaluated the relative positional accuracy of the MLS data based on three criteria: the total length of each forest road; the Root Mean Square Error (RMSE) obtained from coordinate values of the MLS and TS surveys compared to the GNSS survey; and the ratios of the centerlines extracted by the MLS and TS surveys overlaid to the buffer zone by the GNSS survey. Finally, we estimated the time and cost per unit length for producing the map to examine the efficiency of MLS mapping compared to the other two surveys. The results showed that the point cloud data acquired by the MLS survey on the study forest roads had very high precision and so is sufficient to produce a 3D forest road map with high-precision density and a low RMSE value. Although the equipment rental cost is somewhat high, the fact that information targeting on all spatial elements of forest roads can be obtained with a low cost of labor is a benefit when evaluating the efficiency of MLS survey and mapping. Our findings are expected to provide a quantitative assessment of both maintaining sustainable effectiveness and preventing potential environmental damage of forest roads.
|