Summary: | Limited treatment options are among the main reasons why antimicrobial resistance has become a leading major public health problem. In particular, carbapenem-resistant <i>Enterobacteriales</i> (CRE), <i>Pseudomonas aeruginosa</i> and <i>Acinetobacter baumannii</i> have been included by the World Health Organization (WHO) among the pathogens for which new therapeutic agents are needed. The combination of antibiotics represents an effective strategy to treat multidrug-resistant (MDR) pathogen infections. In this context, the aim of this study is to evaluate the in vitro activity of cefiderocol (CFD) in combination with different antimicrobial molecules against a collection of well-characterized clinical strains, exhibiting different patterns of antimicrobial susceptibility. Clinical strains were genomically characterized using Illumina iSeq100 platform. Synergy analyses were performed by combining CFD with piperacillin-tazobactam (PIP-TAZ), fosfomycin (FOS), ampicillin-sulbactam (AMP-SULB), ceftazidime-avibactam (CAZ-AVI), meropenem-vaborbactam (MER-VAB) and imipenem-relebactam (IMI-REL). Our results demonstrated the synergistic effect of CFD in combination with FOS and CAZ-AVI against CRE and carbapenem-resistant <i>Acinetobacter baumannii</i> (CR-Ab) clinical strains owing CFD-resistant profile, while the CFD and AMP-SULB combination was effective against CR-Pa strain displaying AMP-SULB-resistant profile. Moreover, the combination of CAZ-AVI/SULB showed synergistic activity in CAZ-AVI-resistant CRE strain. In conclusion, although further analyses are needed to confirm these results, our work showed the efficacy of CFD when used for synergistic formulations.
|