Microstructures and Properties of Al-Mg Alloys Manufactured by WAAM-CMT

A wire arc additive manufacturing system, based on cold metal transfer technology, was utilized to manufacture the Al-Mg alloy walls. ER5556 wire was used as the filler metal to deposit Al-Mg alloys layer by layer. Based on the orthogonal experiments, the process parameters of the welding current, w...

Full description

Bibliographic Details
Main Authors: Yan Liu, Zhaozhen Liu, Guishen Zhou, Chunlin He, Jun Zhang
Format: Article
Language:English
Published: MDPI AG 2022-08-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/15/15/5460
_version_ 1797413213806002176
author Yan Liu
Zhaozhen Liu
Guishen Zhou
Chunlin He
Jun Zhang
author_facet Yan Liu
Zhaozhen Liu
Guishen Zhou
Chunlin He
Jun Zhang
author_sort Yan Liu
collection DOAJ
description A wire arc additive manufacturing system, based on cold metal transfer technology, was utilized to manufacture the Al-Mg alloy walls. ER5556 wire was used as the filler metal to deposit Al-Mg alloys layer by layer. Based on the orthogonal experiments, the process parameters of the welding current, welding speed and gas flow, as well as interlayer residence time, were adjusted to investigate the microstructure, phase composition and crystal orientation as well as material properties of Al-Mg alloyed additive. The results show that the grain size of Al-Mg alloyed additive becomes smaller with the decrease of welding current or increased welding speed. It is easier to obtain the additive parts with better grain uniformity with the increase of gas flow or interlayer residence time. The phase composition of Al-Mg alloyed additive consists of α-Al matrix and γ (Al<sub>12</sub>Mg<sub>17</sub>) phase. The eutectic reaction occurs during the additive manufacturing process, and the liquefying film is formed on the α-Al matrix and coated on the γ phase surface. The crystal grows preferentially along the <111> and <101> orientations. When the welding current is 90 A, the welding speed is 700 mm/min, the gas flow is 22.5 L/min and the interlayer residence time is 5 min, the Al-Mg alloy additive obtains the highest tensile strength. Under the optimal process parameters, the average grain size of Al-Mg alloyed additive is 25 μm, the transverse tensile strength reaches 382 MPa, the impact absorption energy is 26 J, and the corrosion current density is 3.485 × 10<sup>−6</sup> A·cm<sup>−2</sup>. Both tensile and impact fracture modes of Al-Mg alloyed additive are ductile fractures. From the current view, the Al-Mg alloys manufactured by WAAM-CMT have a better performance than those produced by the traditional casting process.
first_indexed 2024-03-09T05:14:24Z
format Article
id doaj.art-d98d6499b74e4cc0902dc0ef6a338456
institution Directory Open Access Journal
issn 1996-1944
language English
last_indexed 2024-03-09T05:14:24Z
publishDate 2022-08-01
publisher MDPI AG
record_format Article
series Materials
spelling doaj.art-d98d6499b74e4cc0902dc0ef6a3384562023-12-03T12:46:58ZengMDPI AGMaterials1996-19442022-08-011515546010.3390/ma15155460Microstructures and Properties of Al-Mg Alloys Manufactured by WAAM-CMTYan Liu0Zhaozhen Liu1Guishen Zhou2Chunlin He3Jun Zhang4Liaoning Provincial Key Laboratory of Advanced Material Preparation Technology, Shenyang University, Shenyang 110044, ChinaSchool of Mechanical Engineering, Shenyang University, Shenyang 110044, ChinaSchool of Mechanical Engineering, Shenyang University, Shenyang 110044, ChinaLiaoning Provincial Key Laboratory of Advanced Material Preparation Technology, Shenyang University, Shenyang 110044, ChinaLiaoning Provincial Key Laboratory of Research and Application of Multiple Hard Films, Shenyang University, Shenyang 110044, ChinaA wire arc additive manufacturing system, based on cold metal transfer technology, was utilized to manufacture the Al-Mg alloy walls. ER5556 wire was used as the filler metal to deposit Al-Mg alloys layer by layer. Based on the orthogonal experiments, the process parameters of the welding current, welding speed and gas flow, as well as interlayer residence time, were adjusted to investigate the microstructure, phase composition and crystal orientation as well as material properties of Al-Mg alloyed additive. The results show that the grain size of Al-Mg alloyed additive becomes smaller with the decrease of welding current or increased welding speed. It is easier to obtain the additive parts with better grain uniformity with the increase of gas flow or interlayer residence time. The phase composition of Al-Mg alloyed additive consists of α-Al matrix and γ (Al<sub>12</sub>Mg<sub>17</sub>) phase. The eutectic reaction occurs during the additive manufacturing process, and the liquefying film is formed on the α-Al matrix and coated on the γ phase surface. The crystal grows preferentially along the <111> and <101> orientations. When the welding current is 90 A, the welding speed is 700 mm/min, the gas flow is 22.5 L/min and the interlayer residence time is 5 min, the Al-Mg alloy additive obtains the highest tensile strength. Under the optimal process parameters, the average grain size of Al-Mg alloyed additive is 25 μm, the transverse tensile strength reaches 382 MPa, the impact absorption energy is 26 J, and the corrosion current density is 3.485 × 10<sup>−6</sup> A·cm<sup>−2</sup>. Both tensile and impact fracture modes of Al-Mg alloyed additive are ductile fractures. From the current view, the Al-Mg alloys manufactured by WAAM-CMT have a better performance than those produced by the traditional casting process.https://www.mdpi.com/1996-1944/15/15/5460wire arc additive manufacturingcold metal transferAl-Mg alloysorthogonal experimentmicrostructuremechanical properties
spellingShingle Yan Liu
Zhaozhen Liu
Guishen Zhou
Chunlin He
Jun Zhang
Microstructures and Properties of Al-Mg Alloys Manufactured by WAAM-CMT
Materials
wire arc additive manufacturing
cold metal transfer
Al-Mg alloys
orthogonal experiment
microstructure
mechanical properties
title Microstructures and Properties of Al-Mg Alloys Manufactured by WAAM-CMT
title_full Microstructures and Properties of Al-Mg Alloys Manufactured by WAAM-CMT
title_fullStr Microstructures and Properties of Al-Mg Alloys Manufactured by WAAM-CMT
title_full_unstemmed Microstructures and Properties of Al-Mg Alloys Manufactured by WAAM-CMT
title_short Microstructures and Properties of Al-Mg Alloys Manufactured by WAAM-CMT
title_sort microstructures and properties of al mg alloys manufactured by waam cmt
topic wire arc additive manufacturing
cold metal transfer
Al-Mg alloys
orthogonal experiment
microstructure
mechanical properties
url https://www.mdpi.com/1996-1944/15/15/5460
work_keys_str_mv AT yanliu microstructuresandpropertiesofalmgalloysmanufacturedbywaamcmt
AT zhaozhenliu microstructuresandpropertiesofalmgalloysmanufacturedbywaamcmt
AT guishenzhou microstructuresandpropertiesofalmgalloysmanufacturedbywaamcmt
AT chunlinhe microstructuresandpropertiesofalmgalloysmanufacturedbywaamcmt
AT junzhang microstructuresandpropertiesofalmgalloysmanufacturedbywaamcmt