A Restoring Force Model for Prefabricated Concrete Shear Walls with Built-In Steel Sections

Prefabricated shear walls have been widely used in engineering structures. Vertical connection joints of the walls are the key to ensure the safety of the structures. Steel–concrete composite structures have been proved to have a good bearing capacity and ductility. In this paper, a new type of pref...

Full description

Bibliographic Details
Main Authors: Tan Wang, Ruinian Jiang, Shuaifeng Yuan, Kuo Yuan, Liwei Li, Guangyu Zhou
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/24/12131
Description
Summary:Prefabricated shear walls have been widely used in engineering structures. Vertical connection joints of the walls are the key to ensure the safety of the structures. Steel–concrete composite structures have been proved to have a good bearing capacity and ductility. In this paper, a new type of prefabricated structure is proposed, in which vertical wall members are connected together through built-in steel sections and cast-in-place concrete. This paper studies the seismic performance of the proposed prefabricated concrete shear wall structure. Hysteretic curves and skeleton curves of the shear wall are obtained based on experimental analyses. A dimensionless skeleton curve model is developed using the theory of material mechanics and the method of regression analysis. A stiffness calculation method for different loading stages is obtained and a restoring force model is proposed. The proposed innovative prefabricated shear wall structure provides good resistance to seismic performance and the related analysis provides a fundamental reference for studies of prefabricated shear wall structures.
ISSN:2076-3417