Fine Spatial and Temporal Ice/Snow Surface Temperature Generation: Evaluation Spatiotemporal Fusion Methods in Greenland Ice Sheet

Monitoring ice/snow surface temperature (IST) variations with high spatial and temporal resolution data from satellites are essential for research on the mass balance of the Greenland ice sheet (GrIS). However, the tradeoff between satellite sensors' bandwidth and re-entry cycle, cou...

Full description

Bibliographic Details
Main Authors: Qing Cheng, Zejun Zhang, Dong Liang, Fan Ye
Format: Article
Language:English
Published: IEEE 2023-01-01
Series:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10278424/
_version_ 1797530278984417280
author Qing Cheng
Zejun Zhang
Dong Liang
Fan Ye
author_facet Qing Cheng
Zejun Zhang
Dong Liang
Fan Ye
author_sort Qing Cheng
collection DOAJ
description Monitoring ice&#x002F;snow surface temperature (IST) variations with high spatial and temporal resolution data from satellites are essential for research on the mass balance of the Greenland ice sheet (GrIS). However, the tradeoff between satellite sensors' bandwidth and re-entry cycle, coupled with the influence of cloudy weather, limits their ability to fine-monitor IST. Spatiotemporal data fusion is a way of producing high spatiotemporal datasets. This article uses four spatiotemporal fusion algorithms to fuse the Landsat 8 IST data and the Moderate Resolution Imaging Spectrometer IST to generate fine spatial-temporal IST in the GrIS regions. The quantitative evaluation of the different fusion data shows that the <italic>R</italic><sup>2</sup> are all above 0.9. The spatial and temporal nonlocal filter based fusion model (STNLFFM) dual-temporal algorithm provided the highest accuracy with a root mean square error of 2.427 K, followed by the STNLFFM mono-temporal algorithm, the spatial and temporal adaptive reflectance fusion model (STARFM), the flexible spatiotemporal data fusion model, and enhanced STARFM. From the results, the fusion data are accurate and detailed in different regions. That is, the spatiotemporal fusion technique has the potential to generate IST datasets that possess high spatial and temporal resolutions for Greenland.
first_indexed 2024-03-10T10:26:46Z
format Article
id doaj.art-d99762dbe41149ac8ce36f39df1523f9
institution Directory Open Access Journal
issn 2151-1535
language English
last_indexed 2024-03-10T10:26:46Z
publishDate 2023-01-01
publisher IEEE
record_format Article
series IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
spelling doaj.art-d99762dbe41149ac8ce36f39df1523f92023-11-22T00:00:39ZengIEEEIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing2151-15352023-01-0116102161022910.1109/JSTARS.2023.332374210278424Fine Spatial and Temporal Ice&#x002F;Snow Surface Temperature Generation: Evaluation Spatiotemporal Fusion Methods in Greenland Ice SheetQing Cheng0https://orcid.org/0000-0002-0571-4083Zejun Zhang1https://orcid.org/0009-0008-9904-4914Dong Liang2https://orcid.org/0000-0001-9147-7792Fan Ye3https://orcid.org/0009-0001-4637-4345School of Computer Science, China University of Geoscience, Wuhan, ChinaSchool of Computer Science, China University of Geoscience, Wuhan, ChinaInternational Research Center of Big Data for Sustainable Development Goals, Beijing, ChinaSchool of Computer Science, China University of Geoscience, Wuhan, ChinaMonitoring ice&#x002F;snow surface temperature (IST) variations with high spatial and temporal resolution data from satellites are essential for research on the mass balance of the Greenland ice sheet (GrIS). However, the tradeoff between satellite sensors' bandwidth and re-entry cycle, coupled with the influence of cloudy weather, limits their ability to fine-monitor IST. Spatiotemporal data fusion is a way of producing high spatiotemporal datasets. This article uses four spatiotemporal fusion algorithms to fuse the Landsat 8 IST data and the Moderate Resolution Imaging Spectrometer IST to generate fine spatial-temporal IST in the GrIS regions. The quantitative evaluation of the different fusion data shows that the <italic>R</italic><sup>2</sup> are all above 0.9. The spatial and temporal nonlocal filter based fusion model (STNLFFM) dual-temporal algorithm provided the highest accuracy with a root mean square error of 2.427 K, followed by the STNLFFM mono-temporal algorithm, the spatial and temporal adaptive reflectance fusion model (STARFM), the flexible spatiotemporal data fusion model, and enhanced STARFM. From the results, the fusion data are accurate and detailed in different regions. That is, the spatiotemporal fusion technique has the potential to generate IST datasets that possess high spatial and temporal resolutions for Greenland.https://ieeexplore.ieee.org/document/10278424/Greenlandice and snowice/snow surface temperature (IST)spatiotemporal fusionsurface temperature
spellingShingle Qing Cheng
Zejun Zhang
Dong Liang
Fan Ye
Fine Spatial and Temporal Ice&#x002F;Snow Surface Temperature Generation: Evaluation Spatiotemporal Fusion Methods in Greenland Ice Sheet
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Greenland
ice and snow
ice/snow surface temperature (IST)
spatiotemporal fusion
surface temperature
title Fine Spatial and Temporal Ice&#x002F;Snow Surface Temperature Generation: Evaluation Spatiotemporal Fusion Methods in Greenland Ice Sheet
title_full Fine Spatial and Temporal Ice&#x002F;Snow Surface Temperature Generation: Evaluation Spatiotemporal Fusion Methods in Greenland Ice Sheet
title_fullStr Fine Spatial and Temporal Ice&#x002F;Snow Surface Temperature Generation: Evaluation Spatiotemporal Fusion Methods in Greenland Ice Sheet
title_full_unstemmed Fine Spatial and Temporal Ice&#x002F;Snow Surface Temperature Generation: Evaluation Spatiotemporal Fusion Methods in Greenland Ice Sheet
title_short Fine Spatial and Temporal Ice&#x002F;Snow Surface Temperature Generation: Evaluation Spatiotemporal Fusion Methods in Greenland Ice Sheet
title_sort fine spatial and temporal ice x002f snow surface temperature generation evaluation spatiotemporal fusion methods in greenland ice sheet
topic Greenland
ice and snow
ice/snow surface temperature (IST)
spatiotemporal fusion
surface temperature
url https://ieeexplore.ieee.org/document/10278424/
work_keys_str_mv AT qingcheng finespatialandtemporalicex002fsnowsurfacetemperaturegenerationevaluationspatiotemporalfusionmethodsingreenlandicesheet
AT zejunzhang finespatialandtemporalicex002fsnowsurfacetemperaturegenerationevaluationspatiotemporalfusionmethodsingreenlandicesheet
AT dongliang finespatialandtemporalicex002fsnowsurfacetemperaturegenerationevaluationspatiotemporalfusionmethodsingreenlandicesheet
AT fanye finespatialandtemporalicex002fsnowsurfacetemperaturegenerationevaluationspatiotemporalfusionmethodsingreenlandicesheet