A Wavelet-Based Adaptive Finite Element Method for the Stokes Problems

In this work, we present the mathematical formulation of the new adaptive multiresolution method for the Stokes problems of highly viscous materials arising in computational geodynamics. The method is based on particle-in-cell approach—the Stokes system is solved on a static Eulerian finite element...

Full description

Bibliographic Details
Main Authors: Yury A. Mishin, Oleg V. Vasilyev, Taras V. Gerya
Format: Article
Language:English
Published: MDPI AG 2022-06-01
Series:Fluids
Subjects:
Online Access:https://www.mdpi.com/2311-5521/7/7/221
_version_ 1797406464944373760
author Yury A. Mishin
Oleg V. Vasilyev
Taras V. Gerya
author_facet Yury A. Mishin
Oleg V. Vasilyev
Taras V. Gerya
author_sort Yury A. Mishin
collection DOAJ
description In this work, we present the mathematical formulation of the new adaptive multiresolution method for the Stokes problems of highly viscous materials arising in computational geodynamics. The method is based on particle-in-cell approach—the Stokes system is solved on a static Eulerian finite element grid and material properties are carried in space by Lagrangian material points. The Eulerian grid is adapted using the wavelet-based adaptation algorithm. Both bilinear (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="normal">Q</mi><mn>1</mn></msub><msub><mi mathvariant="normal">P</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="normal">Q</mi><mn>1</mn></msub><msub><mi mathvariant="normal">Q</mi><mn>1</mn></msub></mrow></semantics></math></inline-formula>) and biquadratic (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="normal">Q</mi><mn>2</mn></msub><msub><mi mathvariant="normal">P</mi><mrow><mo>-</mo><mn>1</mn></mrow></msub></mrow></semantics></math></inline-formula>) mixed approximations for the Stokes system are supported. The proposed method is illustrated for a number of linear and nonlinear two-dimensional benchmark problems of geophysical relevance. The results of the adaptive numerical simulations using the proposed method are in an excellent agreement with those obtained on non-adaptive grids and with analytical solutions, while computational requirements are few orders of magnitude less compared to the non-adaptive simulations in terms of both time and memory usage.
first_indexed 2024-03-09T03:26:49Z
format Article
id doaj.art-d99b33b21aa1408f9d910d65329b74b1
institution Directory Open Access Journal
issn 2311-5521
language English
last_indexed 2024-03-09T03:26:49Z
publishDate 2022-06-01
publisher MDPI AG
record_format Article
series Fluids
spelling doaj.art-d99b33b21aa1408f9d910d65329b74b12023-12-03T15:02:05ZengMDPI AGFluids2311-55212022-06-017722110.3390/fluids7070221A Wavelet-Based Adaptive Finite Element Method for the Stokes ProblemsYury A. Mishin0Oleg V. Vasilyev1Taras V. Gerya2Department of Earth Sciences, Swiss Federal Institute of Technology Zürich (ETH Zürich), CH-8092 Zürich, SwitzerlandKeldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow 125047, RussiaDepartment of Earth Sciences, Swiss Federal Institute of Technology Zürich (ETH Zürich), CH-8092 Zürich, SwitzerlandIn this work, we present the mathematical formulation of the new adaptive multiresolution method for the Stokes problems of highly viscous materials arising in computational geodynamics. The method is based on particle-in-cell approach—the Stokes system is solved on a static Eulerian finite element grid and material properties are carried in space by Lagrangian material points. The Eulerian grid is adapted using the wavelet-based adaptation algorithm. Both bilinear (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="normal">Q</mi><mn>1</mn></msub><msub><mi mathvariant="normal">P</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="normal">Q</mi><mn>1</mn></msub><msub><mi mathvariant="normal">Q</mi><mn>1</mn></msub></mrow></semantics></math></inline-formula>) and biquadratic (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="normal">Q</mi><mn>2</mn></msub><msub><mi mathvariant="normal">P</mi><mrow><mo>-</mo><mn>1</mn></mrow></msub></mrow></semantics></math></inline-formula>) mixed approximations for the Stokes system are supported. The proposed method is illustrated for a number of linear and nonlinear two-dimensional benchmark problems of geophysical relevance. The results of the adaptive numerical simulations using the proposed method are in an excellent agreement with those obtained on non-adaptive grids and with analytical solutions, while computational requirements are few orders of magnitude less compared to the non-adaptive simulations in terms of both time and memory usage.https://www.mdpi.com/2311-5521/7/7/221Stokes problemadaptive mesh refinementfinite element methodwaveletsparticle-in-cell
spellingShingle Yury A. Mishin
Oleg V. Vasilyev
Taras V. Gerya
A Wavelet-Based Adaptive Finite Element Method for the Stokes Problems
Fluids
Stokes problem
adaptive mesh refinement
finite element method
wavelets
particle-in-cell
title A Wavelet-Based Adaptive Finite Element Method for the Stokes Problems
title_full A Wavelet-Based Adaptive Finite Element Method for the Stokes Problems
title_fullStr A Wavelet-Based Adaptive Finite Element Method for the Stokes Problems
title_full_unstemmed A Wavelet-Based Adaptive Finite Element Method for the Stokes Problems
title_short A Wavelet-Based Adaptive Finite Element Method for the Stokes Problems
title_sort wavelet based adaptive finite element method for the stokes problems
topic Stokes problem
adaptive mesh refinement
finite element method
wavelets
particle-in-cell
url https://www.mdpi.com/2311-5521/7/7/221
work_keys_str_mv AT yuryamishin awaveletbasedadaptivefiniteelementmethodforthestokesproblems
AT olegvvasilyev awaveletbasedadaptivefiniteelementmethodforthestokesproblems
AT tarasvgerya awaveletbasedadaptivefiniteelementmethodforthestokesproblems
AT yuryamishin waveletbasedadaptivefiniteelementmethodforthestokesproblems
AT olegvvasilyev waveletbasedadaptivefiniteelementmethodforthestokesproblems
AT tarasvgerya waveletbasedadaptivefiniteelementmethodforthestokesproblems