Exact controllability of a second order integro-differential equation with a pressure term

This paper is concerned with the boundary exact controllability of the equation $$u''-\Delta u-\int_0^t g(t-\sigma)\Delta u(\sigma) d\sigma=-\nabla p$$ where $Q$ is a finite cilinder $\Omega\times]0,T[$, $\Omega$ is a bounded domain of $R^n$, $u=(u_1(x,t),\ldots,u_n(x,t))$, $x=(x_1,\ldots,...

Full description

Bibliographic Details
Main Authors: Marcelo Cavalcanti, V. N. D. Cavalcanti, A. Rocha, J. A. Soriano
Format: Article
Language:English
Published: University of Szeged 1998-01-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=14
_version_ 1797830809905790976
author Marcelo Cavalcanti
V. N. D. Cavalcanti
A. Rocha
J. A. Soriano
author_facet Marcelo Cavalcanti
V. N. D. Cavalcanti
A. Rocha
J. A. Soriano
author_sort Marcelo Cavalcanti
collection DOAJ
description This paper is concerned with the boundary exact controllability of the equation $$u''-\Delta u-\int_0^t g(t-\sigma)\Delta u(\sigma) d\sigma=-\nabla p$$ where $Q$ is a finite cilinder $\Omega\times]0,T[$, $\Omega$ is a bounded domain of $R^n$, $u=(u_1(x,t),\ldots,u_n(x,t))$, $x=(x_1,\ldots,x_n)$ are $n$-dimensional vectors and $p$ denotes the pressure term. The result is obtained by applying HUM (Hilbert Uniqueness Method) due to J. L. Lions. The above equation is a simple model of dynamical elasticity equations for incompressible materials with memory.
first_indexed 2024-04-09T13:42:01Z
format Article
id doaj.art-d9a33aca32a24569a758ce0cb7dd42fd
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-04-09T13:42:01Z
publishDate 1998-01-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-d9a33aca32a24569a758ce0cb7dd42fd2023-05-09T07:52:56ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751998-01-011998911810.14232/ejqtde.1998.1.914Exact controllability of a second order integro-differential equation with a pressure termMarcelo Cavalcanti0V. N. D. Cavalcanti1A. Rocha2J. A. Soriano3Universidade Estadual de Maringá, BrasilUniversidade Estadual de Maringá, BrasilUniversidade Federal do Rio de Janeiro, BrasilUniversidade Estadual de Maringá, BrasilThis paper is concerned with the boundary exact controllability of the equation $$u''-\Delta u-\int_0^t g(t-\sigma)\Delta u(\sigma) d\sigma=-\nabla p$$ where $Q$ is a finite cilinder $\Omega\times]0,T[$, $\Omega$ is a bounded domain of $R^n$, $u=(u_1(x,t),\ldots,u_n(x,t))$, $x=(x_1,\ldots,x_n)$ are $n$-dimensional vectors and $p$ denotes the pressure term. The result is obtained by applying HUM (Hilbert Uniqueness Method) due to J. L. Lions. The above equation is a simple model of dynamical elasticity equations for incompressible materials with memory.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=14
spellingShingle Marcelo Cavalcanti
V. N. D. Cavalcanti
A. Rocha
J. A. Soriano
Exact controllability of a second order integro-differential equation with a pressure term
Electronic Journal of Qualitative Theory of Differential Equations
title Exact controllability of a second order integro-differential equation with a pressure term
title_full Exact controllability of a second order integro-differential equation with a pressure term
title_fullStr Exact controllability of a second order integro-differential equation with a pressure term
title_full_unstemmed Exact controllability of a second order integro-differential equation with a pressure term
title_short Exact controllability of a second order integro-differential equation with a pressure term
title_sort exact controllability of a second order integro differential equation with a pressure term
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=14
work_keys_str_mv AT marcelocavalcanti exactcontrollabilityofasecondorderintegrodifferentialequationwithapressureterm
AT vndcavalcanti exactcontrollabilityofasecondorderintegrodifferentialequationwithapressureterm
AT arocha exactcontrollabilityofasecondorderintegrodifferentialequationwithapressureterm
AT jasoriano exactcontrollabilityofasecondorderintegrodifferentialequationwithapressureterm