On the hyperbolicity of Delaunay triangulations

If $ X $ is a geodesic metric space and $ x_1, x_2, x_3\in X $, a <i>geodesic triangle</i> $ T = \{x_1, x_2, x_3\} $ is the union of the three geodesics $ [x_1 x_2] $, $ [x_2 x_3] $ and $ [x_3 x_1] $ in $ X $. The space $ X $ is <i>hyperbolic</i> if there exists a constant $...

Full description

Bibliographic Details
Main Authors: Walter Carballosa, José M. Rodríguez, José M. Sigarreta
Format: Article
Language:English
Published: AIMS Press 2023-10-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.20231474?viewType=HTML
Description
Summary:If $ X $ is a geodesic metric space and $ x_1, x_2, x_3\in X $, a <i>geodesic triangle</i> $ T = \{x_1, x_2, x_3\} $ is the union of the three geodesics $ [x_1 x_2] $, $ [x_2 x_3] $ and $ [x_3 x_1] $ in $ X $. The space $ X $ is <i>hyperbolic</i> if there exists a constant $ \delta \ge 0 $ such that any side of any geodesic triangle in $ X $ is contained in the $ \delta $-neighborhood of the union of the two other sides. In this paper, we study the hyperbolicity of an important kind of Euclidean graphs called Delaunay triangulations. Furthermore, we characterize the Delaunay triangulations contained in the Euclidean plane that are hyperbolic.
ISSN:2473-6988