On the hyperbolicity of Delaunay triangulations

If $ X $ is a geodesic metric space and $ x_1, x_2, x_3\in X $, a <i>geodesic triangle</i> $ T = \{x_1, x_2, x_3\} $ is the union of the three geodesics $ [x_1 x_2] $, $ [x_2 x_3] $ and $ [x_3 x_1] $ in $ X $. The space $ X $ is <i>hyperbolic</i> if there exists a constant $...

Full description

Bibliographic Details
Main Authors: Walter Carballosa, José M. Rodríguez, José M. Sigarreta
Format: Article
Language:English
Published: AIMS Press 2023-10-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.20231474?viewType=HTML
_version_ 1797635376276307968
author Walter Carballosa
José M. Rodríguez
José M. Sigarreta
author_facet Walter Carballosa
José M. Rodríguez
José M. Sigarreta
author_sort Walter Carballosa
collection DOAJ
description If $ X $ is a geodesic metric space and $ x_1, x_2, x_3\in X $, a <i>geodesic triangle</i> $ T = \{x_1, x_2, x_3\} $ is the union of the three geodesics $ [x_1 x_2] $, $ [x_2 x_3] $ and $ [x_3 x_1] $ in $ X $. The space $ X $ is <i>hyperbolic</i> if there exists a constant $ \delta \ge 0 $ such that any side of any geodesic triangle in $ X $ is contained in the $ \delta $-neighborhood of the union of the two other sides. In this paper, we study the hyperbolicity of an important kind of Euclidean graphs called Delaunay triangulations. Furthermore, we characterize the Delaunay triangulations contained in the Euclidean plane that are hyperbolic.
first_indexed 2024-03-11T12:20:14Z
format Article
id doaj.art-d9bdbf34da7449dba45c6c94874273d0
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-03-11T12:20:14Z
publishDate 2023-10-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-d9bdbf34da7449dba45c6c94874273d02023-11-07T01:36:05ZengAIMS PressAIMS Mathematics2473-69882023-10-01812287802879010.3934/math.20231474On the hyperbolicity of Delaunay triangulationsWalter Carballosa0 José M. Rodríguez1José M. Sigarreta21. Department of Mathematics and Statistics, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA2. Departamento de Matemáticas, Universidad Carlos Ⅲ de Madrid, Avenida de la Universidad 30, 28911 Leganés, Madrid, Spain3. Facultad de Matemáticas, Universidad Autónoma de Guerrero, Carlos E. Adame No.54 Col. Garita, 39650 Acalpulco Gro., MexicoIf $ X $ is a geodesic metric space and $ x_1, x_2, x_3\in X $, a <i>geodesic triangle</i> $ T = \{x_1, x_2, x_3\} $ is the union of the three geodesics $ [x_1 x_2] $, $ [x_2 x_3] $ and $ [x_3 x_1] $ in $ X $. The space $ X $ is <i>hyperbolic</i> if there exists a constant $ \delta \ge 0 $ such that any side of any geodesic triangle in $ X $ is contained in the $ \delta $-neighborhood of the union of the two other sides. In this paper, we study the hyperbolicity of an important kind of Euclidean graphs called Delaunay triangulations. Furthermore, we characterize the Delaunay triangulations contained in the Euclidean plane that are hyperbolic.https://www.aimspress.com/article/doi/10.3934/math.20231474?viewType=HTMLdelaunay triangulationvoronoi graphhyperbolic graphstessellation graphs
spellingShingle Walter Carballosa
José M. Rodríguez
José M. Sigarreta
On the hyperbolicity of Delaunay triangulations
AIMS Mathematics
delaunay triangulation
voronoi graph
hyperbolic graphs
tessellation graphs
title On the hyperbolicity of Delaunay triangulations
title_full On the hyperbolicity of Delaunay triangulations
title_fullStr On the hyperbolicity of Delaunay triangulations
title_full_unstemmed On the hyperbolicity of Delaunay triangulations
title_short On the hyperbolicity of Delaunay triangulations
title_sort on the hyperbolicity of delaunay triangulations
topic delaunay triangulation
voronoi graph
hyperbolic graphs
tessellation graphs
url https://www.aimspress.com/article/doi/10.3934/math.20231474?viewType=HTML
work_keys_str_mv AT waltercarballosa onthehyperbolicityofdelaunaytriangulations
AT josemrodriguez onthehyperbolicityofdelaunaytriangulations
AT josemsigarreta onthehyperbolicityofdelaunaytriangulations