Simultaneous evaluation of losartan and amlodipine besylate using second-derivative synchronous spectrofluorimetric technique and liquid chromatography with time-programmed fluorimetric detection

This study is concerned with two sensitive, fast and reproducible approaches; namely, second-derivative synchronous fluorimetry (method I) and reversed phase high-performance liquid chromatography with fluorimetric detection (method II) for synchronized evaluation of losartan (LOS) and amlodipine be...

Full description

Bibliographic Details
Main Authors: Shereen Shalan, Jenny Jeehan Nasr
Format: Article
Language:English
Published: The Royal Society 2019-04-01
Series:Royal Society Open Science
Subjects:
Online Access:https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.190310
Description
Summary:This study is concerned with two sensitive, fast and reproducible approaches; namely, second-derivative synchronous fluorimetry (method I) and reversed phase high-performance liquid chromatography with fluorimetric detection (method II) for synchronized evaluation of losartan (LOS) and amlodipine besylate (AML). Method I is based on measuring second-derivative synchronous fluorescence spectra of LOS and AML at Δλ = 80 nm in water. The experimental factors influencing the synchronous fluorescence of the considered compounds were sensibly adjusted. The chromatographic analysis was executed on a Nucleodur MN-C18 column of dimensions; 250 × 4.6 mm i.d. and 5 µm particle size). The fluorimetric detection was time-programmed at λem = 440 nm for AML (0.0–7.5 min) and at λem = 400 nm for LOS (7.5–10 min) after excitation at λex = 245 nm. The mobile phase is a blend of acetonitrile with 0.02 M phosphate buffer in a proportion of 45 : 55, pH 4.0, pumped using a flow rate of 1 ml min−1. The calibration plots were established to be 0.1–4.0 µg ml−1 for both drugs in method I and 0.05–4.0 µg ml−1 for both drugs in method II. The study was extended to the evaluation of the two drugs in their co-formulated tablets.
ISSN:2054-5703