Decoding ‘Maximum Entropy’ Deconvolution

For over five decades, the mathematical procedure termed “maximum entropy” (M-E) has been used to deconvolve structure in spectra, optical and otherwise, although quantitative measures of performance remain unknown. Here, we examine this procedure analytically for the lowest two orders for a Lorentz...

Full description

Bibliographic Details
Main Authors: Long V. Le, Tae Jung Kim, Young Dong Kim, David E. Aspnes
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/24/9/1238
Description
Summary:For over five decades, the mathematical procedure termed “maximum entropy” (M-E) has been used to deconvolve structure in spectra, optical and otherwise, although quantitative measures of performance remain unknown. Here, we examine this procedure analytically for the lowest two orders for a Lorentzian feature, obtaining expressions for the amount of sharpening and identifying how spurious structures appear. Illustrative examples are provided. These results enhance the utility of this widely used deconvolution approach to spectral analysis.
ISSN:1099-4300