Lead-induced impairments in the neural processes related to working memory function.

BACKGROUND: It is well known that lead exposure induces neurotoxic effects, which can result in a variety of neurocognitive dysfunction. Especially, occupational lead exposures in adults are associated with decreases in cognitive performance including working memory. Despite recent advances in human...

Full description

Bibliographic Details
Main Authors: Jeehye Seo, Byung-Kook Lee, Seong-Uk Jin, Jang Woo Park, Yang-Tae Kim, Hun-Kyu Ryeom, Jongmin Lee, Kyung Jin Suh, Suk Hwan Kim, Sin-Jae Park, Kyoung Sook Jeong, Jung-O Ham, Yangho Kim, Yongmin Chang
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2014-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4139362?pdf=render
Description
Summary:BACKGROUND: It is well known that lead exposure induces neurotoxic effects, which can result in a variety of neurocognitive dysfunction. Especially, occupational lead exposures in adults are associated with decreases in cognitive performance including working memory. Despite recent advances in human neuroimaging techniques, the neural correlates of lead-exposed cognitive impairment remain unclear. Therefore, this study was aimed to compare the neural activations in relation to working memory function between the lead-exposed subjects and healthy controls. METHODOLOGY/PRINCIPAL FINDINGS: Thirty-one lead-exposed subjects and 34 healthy subjects performed an n-back memory task during MRI scan. We performed fMRI using the 1-back and 2-back memory tasks differing in cognitive demand. Functional MRI data were analyzed using within- and between-group analysis. We found that the lead-exposed subjects showed poorer working memory performance during high memory loading task than the healthy subjects. In addition, between-group analyses revealed that the lead-exposed subjects showed reduced activation in the dorsolateral prefrontal cortex, ventrolateral prefrontal cortex, pre supplementary motor areas, and inferior parietal cortex. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that functional abnormalities in the frontoparietal working memory network might contribute to impairments in maintenance and manipulation of working memory in the lead-exposed subjects.
ISSN:1932-6203