A comparison of the modern Lie scaling method to classical scaling techniques

In the past 2 decades a new modern scaling technique has emerged from the highly developed theory on the Lie group of transformations. This new method has been applied by engineers to several problems in hydrology and hydraulics, including but not limited to overland flow, groundwater dynamics, sedi...

Full description

Bibliographic Details
Main Authors: J. Polsinelli, M. L. Kavvas
Format: Article
Language:English
Published: Copernicus Publications 2016-07-01
Series:Hydrology and Earth System Sciences
Online Access:http://www.hydrol-earth-syst-sci.net/20/2669/2016/hess-20-2669-2016.pdf
Description
Summary:In the past 2 decades a new modern scaling technique has emerged from the highly developed theory on the Lie group of transformations. This new method has been applied by engineers to several problems in hydrology and hydraulics, including but not limited to overland flow, groundwater dynamics, sediment transport, and open channel hydraulics. This study attempts to clarify the relationship this new technology has with the classical scaling method based on dimensional analysis, non-dimensionalization, and the Vaschy–Buckingham-Π theorem. Key points of the Lie group theory, and the application of the Lie scaling transformation, are outlined and a comparison is made with two classical scaling models through two examples: unconfined groundwater flow and contaminant transport. The Lie scaling method produces an invariant scaling transformation of the prototype variables, which ensures the dynamics between the model and prototype systems will be preserved. Lie scaling can also be used to determine the conditions under which a complete model is dynamically, kinematically, and geometrically similar to the prototype phenomenon. Similarities between the Lie and classical scaling methods are explained, and the relative strengths and weaknesses of the techniques are discussed.
ISSN:1027-5606
1607-7938