An autoencoder-based neural network model for selectional preference: evidence from pseudo-disambiguation and cloze tasks

Intuitively, some predicates have a better fit with certain arguments than others. Usage-based models of language emphasize the importance of semantic similarity in shaping the structuring of constructions (form and meaning). In this study, we focus on modeling the semantics of transitive constructi...

Full description

Bibliographic Details
Main Authors: Aki-Juhani Kyröläinen, Juhani Luotolahti, Filip Ginter
Format: Article
Language:English
Published: University of Tartu Press 2017-09-01
Series:Eesti ja Soome-ugri Keeleteaduse Ajakiri
Subjects:
Online Access:https://ojs.utlib.ee/index.php/jeful/article/view/15005
_version_ 1818190588075311104
author Aki-Juhani Kyröläinen
Juhani Luotolahti
Filip Ginter
author_facet Aki-Juhani Kyröläinen
Juhani Luotolahti
Filip Ginter
author_sort Aki-Juhani Kyröläinen
collection DOAJ
description Intuitively, some predicates have a better fit with certain arguments than others. Usage-based models of language emphasize the importance of semantic similarity in shaping the structuring of constructions (form and meaning). In this study, we focus on modeling the semantics of transitive constructions in Finnish and present an autoencoder-based neural network model trained on semantic vectors based on Word2vec. This model builds on the distributional hypothesis according to which semantic information is primarily shaped by contextual information. Specifically, we focus on the realization of the object. The performance of the model is evaluated in two tasks: a pseudo-disambiguation and a cloze task. Additionally, we contrast the performance of the autoencoder with a previously implemented neural model. In general, the results show that our model achieves an excellent performance on these tasks in comparison to the other models. The results are discussed in terms of usage-based construction grammar. Kokkuvõte. Aki-Juhani Kyröläinen, M. Juhani Luotolahti ja Filip Ginter: Autokoodril põhinev närvivõrkude mudel valikulisel eelistamisel. Intuitiivselt tundub, et mõned argumendid sobivad teatud predikaatidega paremini kokku kui teised. Kasutuspõhised keelemudelid rõhutavad konstruktsioonide struktuuri (nii vormi kui tähenduse) kujunemisel tähendusliku sarnasuse olulisust. Selles uurimuses modelleerime soome keele transitiivsete konstruktsioonide semantikat ja esitame närvivõrkude mudeli ehk autokoodri. Mudel põhineb distributiivse semantika hüpoteesil, mille järgi kujuneb semantiline info peamiselt konteksti põhjal. Täpsemalt keskendume uurimuses objektile. Mudelit hindame nii valeühestamise kui ka lünkülesande abil. Kõrvutame autokoodri tulemusi varem välja töötatud neurovõrgumudelitega ja tõestame, et meie mudel töötab võrreldes teiste mudelitega väga hästi. Tulemused esitame kasutuspõhise konstruktsioonigrammatika kontekstis. Võtmesõnad: neurovõrk; autokooder; tähendusvektor; kasutuspõhine mudel; soome keel
first_indexed 2024-12-12T00:01:06Z
format Article
id doaj.art-d9da6a1efee047ebad5c59912ccd1962
institution Directory Open Access Journal
issn 1736-8987
2228-1339
language English
last_indexed 2024-12-12T00:01:06Z
publishDate 2017-09-01
publisher University of Tartu Press
record_format Article
series Eesti ja Soome-ugri Keeleteaduse Ajakiri
spelling doaj.art-d9da6a1efee047ebad5c59912ccd19622022-12-22T00:45:14ZengUniversity of Tartu PressEesti ja Soome-ugri Keeleteaduse Ajakiri1736-89872228-13392017-09-018210.12697/jeful.2017.8.2.04An autoencoder-based neural network model for selectional preference: evidence from pseudo-disambiguation and cloze tasksAki-Juhani Kyröläinen0Juhani Luotolahti1Filip Ginter2Department of Finnish and Finno-Ugric Languages, 20014 Turun yliopisto, TurkuDepartment of Finnish and Finno-Ugric Languages, 20014 Turun yliopisto, TurkuDepartment of Finnish and Finno-Ugric Languages, 20014 Turun yliopisto, TurkuIntuitively, some predicates have a better fit with certain arguments than others. Usage-based models of language emphasize the importance of semantic similarity in shaping the structuring of constructions (form and meaning). In this study, we focus on modeling the semantics of transitive constructions in Finnish and present an autoencoder-based neural network model trained on semantic vectors based on Word2vec. This model builds on the distributional hypothesis according to which semantic information is primarily shaped by contextual information. Specifically, we focus on the realization of the object. The performance of the model is evaluated in two tasks: a pseudo-disambiguation and a cloze task. Additionally, we contrast the performance of the autoencoder with a previously implemented neural model. In general, the results show that our model achieves an excellent performance on these tasks in comparison to the other models. The results are discussed in terms of usage-based construction grammar. Kokkuvõte. Aki-Juhani Kyröläinen, M. Juhani Luotolahti ja Filip Ginter: Autokoodril põhinev närvivõrkude mudel valikulisel eelistamisel. Intuitiivselt tundub, et mõned argumendid sobivad teatud predikaatidega paremini kokku kui teised. Kasutuspõhised keelemudelid rõhutavad konstruktsioonide struktuuri (nii vormi kui tähenduse) kujunemisel tähendusliku sarnasuse olulisust. Selles uurimuses modelleerime soome keele transitiivsete konstruktsioonide semantikat ja esitame närvivõrkude mudeli ehk autokoodri. Mudel põhineb distributiivse semantika hüpoteesil, mille järgi kujuneb semantiline info peamiselt konteksti põhjal. Täpsemalt keskendume uurimuses objektile. Mudelit hindame nii valeühestamise kui ka lünkülesande abil. Kõrvutame autokoodri tulemusi varem välja töötatud neurovõrgumudelitega ja tõestame, et meie mudel töötab võrreldes teiste mudelitega väga hästi. Tulemused esitame kasutuspõhise konstruktsioonigrammatika kontekstis. Võtmesõnad: neurovõrk; autokooder; tähendusvektor; kasutuspõhine mudel; soome keelhttps://ojs.utlib.ee/index.php/jeful/article/view/15005neural networkautoencodersemantic vectorusage-based modelFinnish
spellingShingle Aki-Juhani Kyröläinen
Juhani Luotolahti
Filip Ginter
An autoencoder-based neural network model for selectional preference: evidence from pseudo-disambiguation and cloze tasks
Eesti ja Soome-ugri Keeleteaduse Ajakiri
neural network
autoencoder
semantic vector
usage-based model
Finnish
title An autoencoder-based neural network model for selectional preference: evidence from pseudo-disambiguation and cloze tasks
title_full An autoencoder-based neural network model for selectional preference: evidence from pseudo-disambiguation and cloze tasks
title_fullStr An autoencoder-based neural network model for selectional preference: evidence from pseudo-disambiguation and cloze tasks
title_full_unstemmed An autoencoder-based neural network model for selectional preference: evidence from pseudo-disambiguation and cloze tasks
title_short An autoencoder-based neural network model for selectional preference: evidence from pseudo-disambiguation and cloze tasks
title_sort autoencoder based neural network model for selectional preference evidence from pseudo disambiguation and cloze tasks
topic neural network
autoencoder
semantic vector
usage-based model
Finnish
url https://ojs.utlib.ee/index.php/jeful/article/view/15005
work_keys_str_mv AT akijuhanikyrolainen anautoencoderbasedneuralnetworkmodelforselectionalpreferenceevidencefrompseudodisambiguationandclozetasks
AT juhaniluotolahti anautoencoderbasedneuralnetworkmodelforselectionalpreferenceevidencefrompseudodisambiguationandclozetasks
AT filipginter anautoencoderbasedneuralnetworkmodelforselectionalpreferenceevidencefrompseudodisambiguationandclozetasks
AT akijuhanikyrolainen autoencoderbasedneuralnetworkmodelforselectionalpreferenceevidencefrompseudodisambiguationandclozetasks
AT juhaniluotolahti autoencoderbasedneuralnetworkmodelforselectionalpreferenceevidencefrompseudodisambiguationandclozetasks
AT filipginter autoencoderbasedneuralnetworkmodelforselectionalpreferenceevidencefrompseudodisambiguationandclozetasks