Synthesis and Characterization of Slow-Release Fertilizer Hydrogel Based on Hydroxy Propyl Methyl Cellulose, Polyvinyl Alcohol, Glycerol and Blended Paper
In this study, biodegradable slow-release fertilizer (SRF) hydrogels were synthesized from hydroxyl propyl methyl cellulose (HPMC), polyvinyl alcohol (PVA), glycerol and urea (SRF1) and HPMC, PVA, glycerol, urea and blended paper (SRF2). The fertilizer hydrogels were characterized by SEM, XRD and FT...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-12-01
|
Series: | Gels |
Subjects: | |
Online Access: | https://www.mdpi.com/2310-2861/7/4/262 |
_version_ | 1797504376368005120 |
---|---|
author | Semiu A. Kareem Idayatu Dere Daniel T. Gungula Fartisincha Peingurta Andrew Abdullahi M. Saddiq Elizabeth F. Adebayo Vadlya T. Tame Haruna M. Kefas Japari Joseph David O. Patrick |
author_facet | Semiu A. Kareem Idayatu Dere Daniel T. Gungula Fartisincha Peingurta Andrew Abdullahi M. Saddiq Elizabeth F. Adebayo Vadlya T. Tame Haruna M. Kefas Japari Joseph David O. Patrick |
author_sort | Semiu A. Kareem |
collection | DOAJ |
description | In this study, biodegradable slow-release fertilizer (SRF) hydrogels were synthesized from hydroxyl propyl methyl cellulose (HPMC), polyvinyl alcohol (PVA), glycerol and urea (SRF1) and HPMC, PVA, glycerol, urea and blended paper (SRF2). The fertilizer hydrogels were characterized by SEM, XRD and FTIR. The swelling capacity of the hydrogels in both distilled and tap water as well as their water retention capacity in sandy soil were evaluated. The hydrogels had good swelling capacity with maximum swelling ratio of 17.2 g/g and 15.6 g/g for SRF1 and SRF2 in distilled, and 14.4 g/g and 15.2 g/g in tap water, respectively. The water retention capacity of the hydrogels in sandy soil exhibited higher water retention when compared with soil without the (SRFs). The soil with the hydrogels was found to have higher water retention than the soil without the hydrogels. The slow-release profile of the hydrogels was also evaluated. The result suggested that the prepared fertilizer hydrogels has a good controlled release capacity. The blended paper component in SRF2 was observed to aid effective release of urea, with about 87.01% release in soil at 44 days compared to the pure urea which was about 97% release within 4 days. The addition of blended paper as a second layer matrix was found to help improve the release properties of the fertilizer. The swelling kinetic of the hydrogel followed Schott’s second order model. The release kinetics of urea in water was best described by Kormeye Peppas, suggesting urea release to be by diffusion via the pores and channels of the SRF, which can be controlled by changing the swelling of the SRF. However, the release mechanism in soil is best described by first order kinetic model, suggesting that the release rate in soil is depended on concentration and probably on diffusion rate via the pores and channels of the SRF. |
first_indexed | 2024-03-10T04:03:45Z |
format | Article |
id | doaj.art-d9dc90b4eaf3452da16864b95ae4d9eb |
institution | Directory Open Access Journal |
issn | 2310-2861 |
language | English |
last_indexed | 2024-03-10T04:03:45Z |
publishDate | 2021-12-01 |
publisher | MDPI AG |
record_format | Article |
series | Gels |
spelling | doaj.art-d9dc90b4eaf3452da16864b95ae4d9eb2023-11-23T08:28:44ZengMDPI AGGels2310-28612021-12-017426210.3390/gels7040262Synthesis and Characterization of Slow-Release Fertilizer Hydrogel Based on Hydroxy Propyl Methyl Cellulose, Polyvinyl Alcohol, Glycerol and Blended PaperSemiu A. Kareem0Idayatu Dere1Daniel T. Gungula2Fartisincha Peingurta Andrew3Abdullahi M. Saddiq4Elizabeth F. Adebayo5Vadlya T. Tame6Haruna M. Kefas7Japari Joseph8David O. Patrick9Department of Chemical Engineering, Modibbo Adama University, Yola 652101, NigeriaDepartment of Chemical Engineering, Modibbo Adama University, Yola 652101, NigeriaDepartment of Crop Production and Horticulture, Modibbo Adama University, Yola 652101, NigeriaDepartment of Science Laboratory Technology, Modibbo Adama University, Yola 652101, NigeriaDepartment of Soil Science, Modibbo Adama University, Yola 652101, NigeriaDepartment of Agricultural Economics and Extension, Modibbo Adama University, Yola 652101, NigeriaDepartment of Crop Production and Horticulture, Modibbo Adama University, Yola 652101, NigeriaDepartment of Chemical Engineering, Modibbo Adama University, Yola 652101, NigeriaDepartment of Chemistry, Modibbo Adama University, Yola 652101, NigeriaDepartment of Chemical Engineering, Modibbo Adama University, Yola 652101, NigeriaIn this study, biodegradable slow-release fertilizer (SRF) hydrogels were synthesized from hydroxyl propyl methyl cellulose (HPMC), polyvinyl alcohol (PVA), glycerol and urea (SRF1) and HPMC, PVA, glycerol, urea and blended paper (SRF2). The fertilizer hydrogels were characterized by SEM, XRD and FTIR. The swelling capacity of the hydrogels in both distilled and tap water as well as their water retention capacity in sandy soil were evaluated. The hydrogels had good swelling capacity with maximum swelling ratio of 17.2 g/g and 15.6 g/g for SRF1 and SRF2 in distilled, and 14.4 g/g and 15.2 g/g in tap water, respectively. The water retention capacity of the hydrogels in sandy soil exhibited higher water retention when compared with soil without the (SRFs). The soil with the hydrogels was found to have higher water retention than the soil without the hydrogels. The slow-release profile of the hydrogels was also evaluated. The result suggested that the prepared fertilizer hydrogels has a good controlled release capacity. The blended paper component in SRF2 was observed to aid effective release of urea, with about 87.01% release in soil at 44 days compared to the pure urea which was about 97% release within 4 days. The addition of blended paper as a second layer matrix was found to help improve the release properties of the fertilizer. The swelling kinetic of the hydrogel followed Schott’s second order model. The release kinetics of urea in water was best described by Kormeye Peppas, suggesting urea release to be by diffusion via the pores and channels of the SRF, which can be controlled by changing the swelling of the SRF. However, the release mechanism in soil is best described by first order kinetic model, suggesting that the release rate in soil is depended on concentration and probably on diffusion rate via the pores and channels of the SRF.https://www.mdpi.com/2310-2861/7/4/262hydrogelblended paperslow-release fertilizerhydroxy propyl methyl cellulosepolyvinyl alcohol |
spellingShingle | Semiu A. Kareem Idayatu Dere Daniel T. Gungula Fartisincha Peingurta Andrew Abdullahi M. Saddiq Elizabeth F. Adebayo Vadlya T. Tame Haruna M. Kefas Japari Joseph David O. Patrick Synthesis and Characterization of Slow-Release Fertilizer Hydrogel Based on Hydroxy Propyl Methyl Cellulose, Polyvinyl Alcohol, Glycerol and Blended Paper Gels hydrogel blended paper slow-release fertilizer hydroxy propyl methyl cellulose polyvinyl alcohol |
title | Synthesis and Characterization of Slow-Release Fertilizer Hydrogel Based on Hydroxy Propyl Methyl Cellulose, Polyvinyl Alcohol, Glycerol and Blended Paper |
title_full | Synthesis and Characterization of Slow-Release Fertilizer Hydrogel Based on Hydroxy Propyl Methyl Cellulose, Polyvinyl Alcohol, Glycerol and Blended Paper |
title_fullStr | Synthesis and Characterization of Slow-Release Fertilizer Hydrogel Based on Hydroxy Propyl Methyl Cellulose, Polyvinyl Alcohol, Glycerol and Blended Paper |
title_full_unstemmed | Synthesis and Characterization of Slow-Release Fertilizer Hydrogel Based on Hydroxy Propyl Methyl Cellulose, Polyvinyl Alcohol, Glycerol and Blended Paper |
title_short | Synthesis and Characterization of Slow-Release Fertilizer Hydrogel Based on Hydroxy Propyl Methyl Cellulose, Polyvinyl Alcohol, Glycerol and Blended Paper |
title_sort | synthesis and characterization of slow release fertilizer hydrogel based on hydroxy propyl methyl cellulose polyvinyl alcohol glycerol and blended paper |
topic | hydrogel blended paper slow-release fertilizer hydroxy propyl methyl cellulose polyvinyl alcohol |
url | https://www.mdpi.com/2310-2861/7/4/262 |
work_keys_str_mv | AT semiuakareem synthesisandcharacterizationofslowreleasefertilizerhydrogelbasedonhydroxypropylmethylcellulosepolyvinylalcoholglycerolandblendedpaper AT idayatudere synthesisandcharacterizationofslowreleasefertilizerhydrogelbasedonhydroxypropylmethylcellulosepolyvinylalcoholglycerolandblendedpaper AT danieltgungula synthesisandcharacterizationofslowreleasefertilizerhydrogelbasedonhydroxypropylmethylcellulosepolyvinylalcoholglycerolandblendedpaper AT fartisinchapeingurtaandrew synthesisandcharacterizationofslowreleasefertilizerhydrogelbasedonhydroxypropylmethylcellulosepolyvinylalcoholglycerolandblendedpaper AT abdullahimsaddiq synthesisandcharacterizationofslowreleasefertilizerhydrogelbasedonhydroxypropylmethylcellulosepolyvinylalcoholglycerolandblendedpaper AT elizabethfadebayo synthesisandcharacterizationofslowreleasefertilizerhydrogelbasedonhydroxypropylmethylcellulosepolyvinylalcoholglycerolandblendedpaper AT vadlyattame synthesisandcharacterizationofslowreleasefertilizerhydrogelbasedonhydroxypropylmethylcellulosepolyvinylalcoholglycerolandblendedpaper AT harunamkefas synthesisandcharacterizationofslowreleasefertilizerhydrogelbasedonhydroxypropylmethylcellulosepolyvinylalcoholglycerolandblendedpaper AT japarijoseph synthesisandcharacterizationofslowreleasefertilizerhydrogelbasedonhydroxypropylmethylcellulosepolyvinylalcoholglycerolandblendedpaper AT davidopatrick synthesisandcharacterizationofslowreleasefertilizerhydrogelbasedonhydroxypropylmethylcellulosepolyvinylalcoholglycerolandblendedpaper |