Some new bounds of the minimum eigenvalue for the Hadamard product of an M-matrix and an inverse M-matrix

Some convergent sequences of the lower bounds of the minimum eigenvalue for the Hadamard product of a nonsingular M-matrix B and the inverse of a nonsingular M-matrix A are given by using Brauer’s theorem. It is proved that these sequences are monotone increasing, and numerical examples are given to...

Full description

Bibliographic Details
Main Authors: Zhao Jianxing, Sang Caili
Format: Article
Language:English
Published: De Gruyter 2016-01-01
Series:Open Mathematics
Subjects:
Online Access:https://doi.org/10.1515/math-2016-0008
Description
Summary:Some convergent sequences of the lower bounds of the minimum eigenvalue for the Hadamard product of a nonsingular M-matrix B and the inverse of a nonsingular M-matrix A are given by using Brauer’s theorem. It is proved that these sequences are monotone increasing, and numerical examples are given to show that these sequences could reach the true value of the minimum eigenvalue in some cases. These results in this paper improve some known results.
ISSN:2391-5455