Machine Learning Based Predictions of Fatigue Crack Growth Rate of Additively Manufactured Ti6Al4V

The present work focusses on machine learning assisted predictions of the fatigue crack growth rate (FCGR) of Ti6Al4V (Ti64) processed through laser powder bed fusion (L-PBF) and post processing. Various machine learning techniques have provided a flexible approach for explaining the complex mathema...

وصف كامل

التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Nithin Konda, Raviraj Verma, Rengaswamy Jayaganthan
التنسيق: مقال
اللغة:English
منشور في: MDPI AG 2021-12-01
سلاسل:Metals
الموضوعات:
الوصول للمادة أونلاين:https://www.mdpi.com/2075-4701/12/1/50