Mathematical Model for Fault Handling of Singular Nonlinear Time-Varying Delay Systems Based on T-S Fuzzy Model

In this paper, a mathematical model based on the T-S fuzzy model is proposed to solve the fault estimation (FE) and fault-tolerant control (FTC) problem for singular nonlinear time-varying delay (TVD) systems with sensor fault. TVD is is extremely difficult to solve and the Laplace transform is devi...

Full description

Bibliographic Details
Main Authors: Jianing Cao, Hua Chen
Format: Article
Language:English
Published: MDPI AG 2023-06-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/11/2547
Description
Summary:In this paper, a mathematical model based on the T-S fuzzy model is proposed to solve the fault estimation (FE) and fault-tolerant control (FTC) problem for singular nonlinear time-varying delay (TVD) systems with sensor fault. TVD is is extremely difficult to solve and the Laplace transform is devised to build an equal system free of TVD. Additionally, the sensor fault is changed to actuator fault by the developed coordinate transformation. A fuzzy learning fault estimator is first built to estimate the detailed sensor fault information. Then, a PI FTC scheme is suggested aiming at minimizing the damage caused by the fault. Simulation results from multiple faults reveal that the FE and FTC algorithms are able to estimate the fault and guarantee the system performance properly.
ISSN:2227-7390