Tumor-Educated Platelet Extracellular Vesicles: Proteomic Profiling and Crosstalk with Colorectal Cancer Cells

Background: Platelet–cancer cell interactions modulate tumor metastasis and thrombosis in cancer. Platelet-derived extracellular vesicles (EVs) can contribute to these outcomes. Methods: We characterized the medium-sized EVs (mEVs) released by thrombin-stimulated platelets of colorectal cancer (CRC)...

Full description

Bibliographic Details
Main Authors: Annalisa Contursi, Rosa Fullone, Paulina Szklanna-Koszalinska, Simone Marcone, Paola Lanuti, Francesco Taus, Alessandra Meneguzzi, Giulia Turri, Melania Dovizio, Annalisa Bruno, Corrado Pedrazzani, Stefania Tacconelli, Marco Marchisio, Patrizia Ballerini, Pietro Minuz, Patricia Maguire, Paola Patrignani
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Cancers
Subjects:
Online Access:https://www.mdpi.com/2072-6694/15/2/350
Description
Summary:Background: Platelet–cancer cell interactions modulate tumor metastasis and thrombosis in cancer. Platelet-derived extracellular vesicles (EVs) can contribute to these outcomes. Methods: We characterized the medium-sized EVs (mEVs) released by thrombin-stimulated platelets of colorectal cancer (CRC) patients and healthy subjects (HS) on the capacity to induce epithelial-mesenchymal transition (EMT)-related genes and cyclooxygenase (COX)-2(<i>PTGS2</i>), and thromboxane (TX)B<sub>2</sub> production in cocultures with four colorectal cancer cell lines. Platelet-derived mEVs were assessed for their size distribution and proteomics signature. Results: The mEV population released from thrombin-activated platelets of CRC patients had a different size distribution vs. HS. Platelet-derived mEVs from CRC patients, but not from HS, upregulated EMT marker genes, such as <i>TWIST1</i> and <i>VIM,</i> and downregulated <i>CDH1. PTGS2</i> was also upregulated. In cocultures of platelet-derived mEVs with cancer cells, TXB<sub>2</sub> generation was enhanced. The proteomics profile of mEVs released from activated platelets of CRC patients revealed that 119 proteins were downregulated and 89 upregulated vs. HS. Conclusions: We show that mEVs released from thrombin-activated platelets of CRC patients have distinct features (size distribution and proteomics cargo) vs. HS and promote prometastatic and prothrombotic phenotypes in cancer cells. The analysis of platelet-derived mEVs from CRC patients could provide valuable information for developing an appropriate treatment plan.
ISSN:2072-6694