基于多源异构时空数据融合的交通流量预测模型

交通流量预测问题具有多源异构性,未来时刻的流量不仅与之前时刻的流量相关,同时也受城市区域间关系、天气情况、兴趣点(point of interest,POI)等异构时空数据的影响。针对此问题,提出一种基于多源异构时空数据融合的交通流量预测模型MHF-STNet。首先使用聚类方法获得城市区域不同的流量模式,并使用拼接、权重相加、注意力机制等多种方式融合交通流量、城市区域间的位置关系、天气、POI、工作日、假期多个模态的时空数据,使用深度学习方法对异构数据统一建模,预测未来时刻的交通流量。在北京出租车、纽约出租车和纽约自行车3个流量数据集上进行实验,与经典的交通流量预测模型相比,MHFSTNet的...

Full description

Bibliographic Details
Main Author: 安洋, 孙健玮, 李倩, 宫永顺
Format: Article
Language:zho
Published: China InfoCom Media Group 2023-07-01
Series:大数据
Subjects:
Online Access:https://www.infocomm-journal.com/bdr/CN/10.11959/j.issn.2096-0271.2023042
Description
Summary:交通流量预测问题具有多源异构性,未来时刻的流量不仅与之前时刻的流量相关,同时也受城市区域间关系、天气情况、兴趣点(point of interest,POI)等异构时空数据的影响。针对此问题,提出一种基于多源异构时空数据融合的交通流量预测模型MHF-STNet。首先使用聚类方法获得城市区域不同的流量模式,并使用拼接、权重相加、注意力机制等多种方式融合交通流量、城市区域间的位置关系、天气、POI、工作日、假期多个模态的时空数据,使用深度学习方法对异构数据统一建模,预测未来时刻的交通流量。在北京出租车、纽约出租车和纽约自行车3个流量数据集上进行实验,与经典的交通流量预测模型相比,MHFSTNet的预测准确度有所提升。结果验证了MHF-STNet对异构时空数据统一建模的有效性。
ISSN:2096-0271