Testing the Suitability of Automated Machine Learning for Weeds Identification
In the past years, several machine-learning-based techniques have arisen for providing effective crop protection. For instance, deep neural networks have been used to identify different types of weeds under different real-world conditions. However, these techniques usually require extensive involvem...
Asıl Yazarlar: | Borja Espejo-Garcia, Ioannis Malounas, Eleanna Vali, Spyros Fountas |
---|---|
Materyal Türü: | Makale |
Dil: | English |
Baskı/Yayın Bilgisi: |
MDPI AG
2021-02-01
|
Seri Bilgileri: | AI |
Konular: | |
Online Erişim: | https://www.mdpi.com/2673-2688/2/1/4 |
Benzer Materyaller
-
Comparisons of automated machine learning (AutoML) in predicting whistleblowing of academic dishonesty with demographic and theory of planned behavior
Yazar:: Rahayu Abdul Rahman, ve diğerleri
Baskı/Yayın Bilgisi: (2023-12-01) -
Testing the suitability of automated machine learning, hyperspectral imaging and CIELAB color space for proximal in situ fertilization level classification
Yazar:: Ioannis Malounas, ve diğerleri
Baskı/Yayın Bilgisi: (2024-08-01) -
Predicting Grape Sugar Content under Quality Attributes Using Normalized Difference Vegetation Index Data and Automated Machine Learning
Yazar:: Aikaterini Kasimati, ve diğerleri
Baskı/Yayın Bilgisi: (2022-04-01) -
Use Test of Automated Machine Learning in Cancer Diagnostics
Yazar:: Manfred Musigmann, ve diğerleri
Baskı/Yayın Bilgisi: (2023-07-01) -
Deepmol: an automated machine and deep learning framework for computational chemistry
Yazar:: João Correia, ve diğerleri
Baskı/Yayın Bilgisi: (2024-12-01)