Polarization and phase control of electron injection and acceleration in the plasma by a self-steepening laser pulse
We describe an interplay between two injection mechanism of background electrons into an evolving plasma bubble behind an intense laser pulse: one due to the overall bubble expansion, and another due to its periodic undulation. The two mechanisms occur simultaneously when an intense laser pulse prop...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IOP Publishing
2023-01-01
|
Series: | New Journal of Physics |
Subjects: | |
Online Access: | https://doi.org/10.1088/1367-2630/acbed5 |
Summary: | We describe an interplay between two injection mechanism of background electrons into an evolving plasma bubble behind an intense laser pulse: one due to the overall bubble expansion, and another due to its periodic undulation. The two mechanisms occur simultaneously when an intense laser pulse propagating inside a plasma forms a shock-like steepened front. Periodic undulations of the plasma bubble along the laser propagation path can either inhibit or conspire with electron injection due to bubble expansion. We show that carrier-envelope-phase (CEP) controlled plasma bubble undulation induced by the self-steepening laser pulse produces a unique electron injector—expanding phase-controlled undulating bubble (EPUB). The longitudinal structure of the electron bunch injected by the EPUB can be controlled by laser polarization and power, resulting in high-charge (multiple nano-Coulombs) high-current (tens of kilo-amperes) electron beams with ultra-short (femtosecond-scale) temporal structure. Generation of high-energy betatron radiation with polarization- and CEP-controlled energy spectrum and angular distribution is analyzed as a promising application of EPUB-produced beams. |
---|---|
ISSN: | 1367-2630 |