XMM–NuSTAR Observation and Multiwavelength Spectral Energy Distribution Modeling of Blazar 4FGL J1520.8–0348
Active galactic nuclei (AGNs) can power relativistic jets, which are called blazars when pointed close to our line of sight. Depending on the presence or absence of emission lines in their optical spectra, blazars are categorized into flat spectrum radio quasars (FSRQs) or BL Lacertae (BL Lac) objec...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IOP Publishing
2024-01-01
|
Series: | The Astrophysical Journal |
Subjects: | |
Online Access: | https://doi.org/10.3847/1538-4357/ad3236 |
_version_ | 1827287152729260032 |
---|---|
author | Garima Rajguru L. Marcotulli M. Ajello A. Tramacere |
author_facet | Garima Rajguru L. Marcotulli M. Ajello A. Tramacere |
author_sort | Garima Rajguru |
collection | DOAJ |
description | Active galactic nuclei (AGNs) can power relativistic jets, which are called blazars when pointed close to our line of sight. Depending on the presence or absence of emission lines in their optical spectra, blazars are categorized into flat spectrum radio quasars (FSRQs) or BL Lacertae (BL Lac) objects. According to the “blazar sequence,” as synchrotron peak frequency ( ${\nu }_{\mathrm{pk}}^{\mathrm{sy}}$ ) shifts to higher energies, the synchrotron peak luminosity decreases. This means that BL Lac objects as luminous as FSRQs, and with synchrotron peak frequencies ${\nu }_{\mathrm{pk}}^{\mathrm{sy}}\gt {10}^{15}$ Hz, should not exist. Detected as a high-synchrotron peak (HSP; ${\nu }_{\mathrm{pk}}^{\mathrm{sy}}\gt {10}^{15}$ Hz) BL Lac object, 4FGL J1520.8-0348 shows high γ -ray luminosity ( L _γ > 10 ^46 erg s ^−1 ), being at a high redshift of z = 1.46. Since it is an outlier in the “blazar sequence,” the process of its jet acceleration and power may be different from bona fide BL Lac objects. In this work, we constrain its spectral energy distribution (SED) by modeling the multiwavelength data from infrared to γ -ray regime. Simultaneous X-ray data were obtained from X-ray Multi-Mirror Mission and Nuclear Spectroscopic Telescope Array to constrain the synchrotron emission and underlying electron distribution. On undertaking the SED modeling of the source, including the effect of extragalactic background light, we conclude that the source is more likely to be a “blue FSRQ” or “masquerading BL Lac” where the BL Lac object is actually an FSRQ in disguise. |
first_indexed | 2024-04-24T10:52:35Z |
format | Article |
id | doaj.art-da0b419f1b124631b79cb699d4ab5b52 |
institution | Directory Open Access Journal |
issn | 1538-4357 |
language | English |
last_indexed | 2024-04-24T10:52:35Z |
publishDate | 2024-01-01 |
publisher | IOP Publishing |
record_format | Article |
series | The Astrophysical Journal |
spelling | doaj.art-da0b419f1b124631b79cb699d4ab5b522024-04-12T08:10:15ZengIOP PublishingThe Astrophysical Journal1538-43572024-01-01965211210.3847/1538-4357/ad3236XMM–NuSTAR Observation and Multiwavelength Spectral Energy Distribution Modeling of Blazar 4FGL J1520.8–0348Garima Rajguru0https://orcid.org/0009-0004-5648-2405L. Marcotulli1https://orcid.org/0000-0002-8472-3649M. Ajello2https://orcid.org/0000-0002-6584-1703A. Tramacere3https://orcid.org/0000-0002-8186-3793Department of Physics and Astronomy, Clemson University , Kinard Lab of Physics, Clemson, SC 29634-0978, USA ; grajgur@clemson.eduYale Center for Astronomy & Astrophysics , 52 Hillhouse Avenue, New Haven, CT 06511, USA ; lea.marcotulli@yale.edu; Department of Physics, Yale University , P.O. Box 208120, New Haven, CT 06520, USADepartment of Physics and Astronomy, Clemson University , Kinard Lab of Physics, Clemson, SC 29634-0978, USA ; grajgur@clemson.eduDepartment of Astronomy, University of Geneva , Ch. d’Ecogia 16, Versoix, 1290, SwitzerlandActive galactic nuclei (AGNs) can power relativistic jets, which are called blazars when pointed close to our line of sight. Depending on the presence or absence of emission lines in their optical spectra, blazars are categorized into flat spectrum radio quasars (FSRQs) or BL Lacertae (BL Lac) objects. According to the “blazar sequence,” as synchrotron peak frequency ( ${\nu }_{\mathrm{pk}}^{\mathrm{sy}}$ ) shifts to higher energies, the synchrotron peak luminosity decreases. This means that BL Lac objects as luminous as FSRQs, and with synchrotron peak frequencies ${\nu }_{\mathrm{pk}}^{\mathrm{sy}}\gt {10}^{15}$ Hz, should not exist. Detected as a high-synchrotron peak (HSP; ${\nu }_{\mathrm{pk}}^{\mathrm{sy}}\gt {10}^{15}$ Hz) BL Lac object, 4FGL J1520.8-0348 shows high γ -ray luminosity ( L _γ > 10 ^46 erg s ^−1 ), being at a high redshift of z = 1.46. Since it is an outlier in the “blazar sequence,” the process of its jet acceleration and power may be different from bona fide BL Lac objects. In this work, we constrain its spectral energy distribution (SED) by modeling the multiwavelength data from infrared to γ -ray regime. Simultaneous X-ray data were obtained from X-ray Multi-Mirror Mission and Nuclear Spectroscopic Telescope Array to constrain the synchrotron emission and underlying electron distribution. On undertaking the SED modeling of the source, including the effect of extragalactic background light, we conclude that the source is more likely to be a “blue FSRQ” or “masquerading BL Lac” where the BL Lac object is actually an FSRQ in disguise.https://doi.org/10.3847/1538-4357/ad3236BlazarsActive galactic nucleiBL Lacertae objectsHigh-redshift galaxiesAstronomy data modelingActive galaxies |
spellingShingle | Garima Rajguru L. Marcotulli M. Ajello A. Tramacere XMM–NuSTAR Observation and Multiwavelength Spectral Energy Distribution Modeling of Blazar 4FGL J1520.8–0348 The Astrophysical Journal Blazars Active galactic nuclei BL Lacertae objects High-redshift galaxies Astronomy data modeling Active galaxies |
title | XMM–NuSTAR Observation and Multiwavelength Spectral Energy Distribution Modeling of Blazar 4FGL J1520.8–0348 |
title_full | XMM–NuSTAR Observation and Multiwavelength Spectral Energy Distribution Modeling of Blazar 4FGL J1520.8–0348 |
title_fullStr | XMM–NuSTAR Observation and Multiwavelength Spectral Energy Distribution Modeling of Blazar 4FGL J1520.8–0348 |
title_full_unstemmed | XMM–NuSTAR Observation and Multiwavelength Spectral Energy Distribution Modeling of Blazar 4FGL J1520.8–0348 |
title_short | XMM–NuSTAR Observation and Multiwavelength Spectral Energy Distribution Modeling of Blazar 4FGL J1520.8–0348 |
title_sort | xmm nustar observation and multiwavelength spectral energy distribution modeling of blazar 4fgl j1520 8 0348 |
topic | Blazars Active galactic nuclei BL Lacertae objects High-redshift galaxies Astronomy data modeling Active galaxies |
url | https://doi.org/10.3847/1538-4357/ad3236 |
work_keys_str_mv | AT garimarajguru xmmnustarobservationandmultiwavelengthspectralenergydistributionmodelingofblazar4fglj152080348 AT lmarcotulli xmmnustarobservationandmultiwavelengthspectralenergydistributionmodelingofblazar4fglj152080348 AT majello xmmnustarobservationandmultiwavelengthspectralenergydistributionmodelingofblazar4fglj152080348 AT atramacere xmmnustarobservationandmultiwavelengthspectralenergydistributionmodelingofblazar4fglj152080348 |