A Comparative Study of Responses of Fractional Oscillator to Sinusoidal Excitation in the Weyl and Caputo Senses

The fractional oscillator equation with the sinusoidal excitation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><msup><mi>x</mi><mo>″</mo></msup>...

Full description

Bibliographic Details
Main Authors: Jun-Sheng Duan, Yu-Jie Lan, Ming Li
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/6/12/692
_version_ 1797458338590490624
author Jun-Sheng Duan
Yu-Jie Lan
Ming Li
author_facet Jun-Sheng Duan
Yu-Jie Lan
Ming Li
author_sort Jun-Sheng Duan
collection DOAJ
description The fractional oscillator equation with the sinusoidal excitation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><msup><mi>x</mi><mo>″</mo></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><mi>b</mi><mspace width="0.166667em"></mspace><msubsup><mi>D</mi><mi>t</mi><mi>α</mi></msubsup><mi>x</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><mi>k</mi><mi>x</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mi>F</mi><mo form="prefix">sin</mo><mrow><mo>(</mo><mi>ω</mi><mi>t</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>ω</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo><</mo><mi>α</mi><mo><</mo><mn>2</mn></mrow></semantics></math></inline-formula> is comparatively considered for the Weyl fractional derivative and the Caputo fractional derivative. In the sense of Weyl, the fractional oscillator equation is solved to be a steady periodic oscillation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>x</mi><mi>W</mi></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. In the sense of Caputo, the fractional oscillator equation is solved and subjected to initial conditions. For the fractional case <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>∪</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>, the response to excitation, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula>, is a superposition of three parts: the steady periodic oscillation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>x</mi><mi>W</mi></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, an exponentially decaying oscillation and a monotone recovery term in negative power law. For the two responses to initial values, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>S</mi><mn>0</mn></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>S</mi><mn>1</mn></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, either of them is a superposition of an exponentially decaying oscillation and a monotone recovery term in negative power law. The monotone recovery terms come from the Hankel integrals which make the fractional case different from the integer-order case. The asymptotic behaviors of the solutions removing the steady periodic response are given for the four cases of the initial values. The Weyl fractional derivative is suitable for a describing steady-state problem, and can directly lead to a steady periodic solution. The Caputo fractional derivative is applied to an initial value problem and the steady component of the solution is just the solution in the corresponding Weyl sense.
first_indexed 2024-03-09T16:35:40Z
format Article
id doaj.art-da1edd133cfa48f186a2d5f4cdf4df7b
institution Directory Open Access Journal
issn 2504-3110
language English
last_indexed 2024-03-09T16:35:40Z
publishDate 2022-11-01
publisher MDPI AG
record_format Article
series Fractal and Fractional
spelling doaj.art-da1edd133cfa48f186a2d5f4cdf4df7b2023-11-24T14:57:01ZengMDPI AGFractal and Fractional2504-31102022-11-0161269210.3390/fractalfract6120692A Comparative Study of Responses of Fractional Oscillator to Sinusoidal Excitation in the Weyl and Caputo SensesJun-Sheng Duan0Yu-Jie Lan1Ming Li2School of Sciences, Shanghai Institute of Technology, Shanghai 201418, ChinaSchool of Sciences, Shanghai Institute of Technology, Shanghai 201418, ChinaOcean College, Zhejiang University, Zhoushan 316021, ChinaThe fractional oscillator equation with the sinusoidal excitation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><msup><mi>x</mi><mo>″</mo></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><mi>b</mi><mspace width="0.166667em"></mspace><msubsup><mi>D</mi><mi>t</mi><mi>α</mi></msubsup><mi>x</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><mi>k</mi><mi>x</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mi>F</mi><mo form="prefix">sin</mo><mrow><mo>(</mo><mi>ω</mi><mi>t</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>ω</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo><</mo><mi>α</mi><mo><</mo><mn>2</mn></mrow></semantics></math></inline-formula> is comparatively considered for the Weyl fractional derivative and the Caputo fractional derivative. In the sense of Weyl, the fractional oscillator equation is solved to be a steady periodic oscillation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>x</mi><mi>W</mi></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. In the sense of Caputo, the fractional oscillator equation is solved and subjected to initial conditions. For the fractional case <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>∪</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>, the response to excitation, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula>, is a superposition of three parts: the steady periodic oscillation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>x</mi><mi>W</mi></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, an exponentially decaying oscillation and a monotone recovery term in negative power law. For the two responses to initial values, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>S</mi><mn>0</mn></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>S</mi><mn>1</mn></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, either of them is a superposition of an exponentially decaying oscillation and a monotone recovery term in negative power law. The monotone recovery terms come from the Hankel integrals which make the fractional case different from the integer-order case. The asymptotic behaviors of the solutions removing the steady periodic response are given for the four cases of the initial values. The Weyl fractional derivative is suitable for a describing steady-state problem, and can directly lead to a steady periodic solution. The Caputo fractional derivative is applied to an initial value problem and the steady component of the solution is just the solution in the corresponding Weyl sense.https://www.mdpi.com/2504-3110/6/12/692fractional calculusfractional oscillatorWeyl fractional derivativeCaputo fractional derivativeLaplace transform
spellingShingle Jun-Sheng Duan
Yu-Jie Lan
Ming Li
A Comparative Study of Responses of Fractional Oscillator to Sinusoidal Excitation in the Weyl and Caputo Senses
Fractal and Fractional
fractional calculus
fractional oscillator
Weyl fractional derivative
Caputo fractional derivative
Laplace transform
title A Comparative Study of Responses of Fractional Oscillator to Sinusoidal Excitation in the Weyl and Caputo Senses
title_full A Comparative Study of Responses of Fractional Oscillator to Sinusoidal Excitation in the Weyl and Caputo Senses
title_fullStr A Comparative Study of Responses of Fractional Oscillator to Sinusoidal Excitation in the Weyl and Caputo Senses
title_full_unstemmed A Comparative Study of Responses of Fractional Oscillator to Sinusoidal Excitation in the Weyl and Caputo Senses
title_short A Comparative Study of Responses of Fractional Oscillator to Sinusoidal Excitation in the Weyl and Caputo Senses
title_sort comparative study of responses of fractional oscillator to sinusoidal excitation in the weyl and caputo senses
topic fractional calculus
fractional oscillator
Weyl fractional derivative
Caputo fractional derivative
Laplace transform
url https://www.mdpi.com/2504-3110/6/12/692
work_keys_str_mv AT junshengduan acomparativestudyofresponsesoffractionaloscillatortosinusoidalexcitationintheweylandcaputosenses
AT yujielan acomparativestudyofresponsesoffractionaloscillatortosinusoidalexcitationintheweylandcaputosenses
AT mingli acomparativestudyofresponsesoffractionaloscillatortosinusoidalexcitationintheweylandcaputosenses
AT junshengduan comparativestudyofresponsesoffractionaloscillatortosinusoidalexcitationintheweylandcaputosenses
AT yujielan comparativestudyofresponsesoffractionaloscillatortosinusoidalexcitationintheweylandcaputosenses
AT mingli comparativestudyofresponsesoffractionaloscillatortosinusoidalexcitationintheweylandcaputosenses