Sensitive Aflatoxin B1 Detection Using Nanoparticle-Based Competitive Magnetic Immunodetection
Food and crop contaminations with mycotoxins are a severe health risk for consumers and cause high economic losses worldwide. Currently, different chromatographic- and immuno-based methods are used to detect mycotoxins within different sample matrices. There is a need for novel, highly sensitive det...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-05-01
|
Series: | Toxins |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-6651/12/5/337 |
_version_ | 1797567459025223680 |
---|---|
author | Jan Pietschmann Holger Spiegel Hans-Joachim Krause Stefan Schillberg Florian Schröper |
author_facet | Jan Pietschmann Holger Spiegel Hans-Joachim Krause Stefan Schillberg Florian Schröper |
author_sort | Jan Pietschmann |
collection | DOAJ |
description | Food and crop contaminations with mycotoxins are a severe health risk for consumers and cause high economic losses worldwide. Currently, different chromatographic- and immuno-based methods are used to detect mycotoxins within different sample matrices. There is a need for novel, highly sensitive detection technologies that avoid time-consuming procedures and expensive laboratory equipment but still provide sufficient sensitivity to achieve the mandated detection limit for mycotoxin content. Here we describe a novel, highly sensitive, and portable aflatoxin B1 detection approach using competitive magnetic immunodetection (cMID). As a reference method, a competitive ELISA optimized by checkerboard titration was established. For the novel cMID procedure, immunofiltration columns, coated with aflatoxin B1-BSA conjugate were used for competitive enrichment of biotinylated aflatoxin B1-specific antibodies. Subsequently, magnetic particles functionalized with streptavidin can be applied to magnetically label retained antibodies. By means of frequency mixing technology, particles were detected and quantified corresponding to the aflatoxin content in the sample. After the optimization of assay conditions, we successfully demonstrated the new competitive magnetic detection approach with a comparable detection limit of 1.1 ng aflatoxin B1 per mL sample to the cELISA reference method. Our results indicate that the cMID is a promising method reducing the risks of processing contaminated commodities. |
first_indexed | 2024-03-10T19:42:15Z |
format | Article |
id | doaj.art-da2ca4c95e794780b53e34f6e4e7faf5 |
institution | Directory Open Access Journal |
issn | 2072-6651 |
language | English |
last_indexed | 2024-03-10T19:42:15Z |
publishDate | 2020-05-01 |
publisher | MDPI AG |
record_format | Article |
series | Toxins |
spelling | doaj.art-da2ca4c95e794780b53e34f6e4e7faf52023-11-20T01:10:24ZengMDPI AGToxins2072-66512020-05-0112533710.3390/toxins12050337Sensitive Aflatoxin B1 Detection Using Nanoparticle-Based Competitive Magnetic ImmunodetectionJan Pietschmann0Holger Spiegel1Hans-Joachim Krause2Stefan Schillberg3Florian Schröper4Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074 Aachen, GermanyFraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074 Aachen, GermanyInstitute of Biological Information Processing, Bioelectronics IBI-3, Forschungszentrum Jülich, 52428 Jülich, GermanyFraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074 Aachen, GermanyFraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074 Aachen, GermanyFood and crop contaminations with mycotoxins are a severe health risk for consumers and cause high economic losses worldwide. Currently, different chromatographic- and immuno-based methods are used to detect mycotoxins within different sample matrices. There is a need for novel, highly sensitive detection technologies that avoid time-consuming procedures and expensive laboratory equipment but still provide sufficient sensitivity to achieve the mandated detection limit for mycotoxin content. Here we describe a novel, highly sensitive, and portable aflatoxin B1 detection approach using competitive magnetic immunodetection (cMID). As a reference method, a competitive ELISA optimized by checkerboard titration was established. For the novel cMID procedure, immunofiltration columns, coated with aflatoxin B1-BSA conjugate were used for competitive enrichment of biotinylated aflatoxin B1-specific antibodies. Subsequently, magnetic particles functionalized with streptavidin can be applied to magnetically label retained antibodies. By means of frequency mixing technology, particles were detected and quantified corresponding to the aflatoxin content in the sample. After the optimization of assay conditions, we successfully demonstrated the new competitive magnetic detection approach with a comparable detection limit of 1.1 ng aflatoxin B1 per mL sample to the cELISA reference method. Our results indicate that the cMID is a promising method reducing the risks of processing contaminated commodities.https://www.mdpi.com/2072-6651/12/5/337frequency mixing technologyimmunofiltrationmagnetic beadsmycotoxin |
spellingShingle | Jan Pietschmann Holger Spiegel Hans-Joachim Krause Stefan Schillberg Florian Schröper Sensitive Aflatoxin B1 Detection Using Nanoparticle-Based Competitive Magnetic Immunodetection Toxins frequency mixing technology immunofiltration magnetic beads mycotoxin |
title | Sensitive Aflatoxin B1 Detection Using Nanoparticle-Based Competitive Magnetic Immunodetection |
title_full | Sensitive Aflatoxin B1 Detection Using Nanoparticle-Based Competitive Magnetic Immunodetection |
title_fullStr | Sensitive Aflatoxin B1 Detection Using Nanoparticle-Based Competitive Magnetic Immunodetection |
title_full_unstemmed | Sensitive Aflatoxin B1 Detection Using Nanoparticle-Based Competitive Magnetic Immunodetection |
title_short | Sensitive Aflatoxin B1 Detection Using Nanoparticle-Based Competitive Magnetic Immunodetection |
title_sort | sensitive aflatoxin b1 detection using nanoparticle based competitive magnetic immunodetection |
topic | frequency mixing technology immunofiltration magnetic beads mycotoxin |
url | https://www.mdpi.com/2072-6651/12/5/337 |
work_keys_str_mv | AT janpietschmann sensitiveaflatoxinb1detectionusingnanoparticlebasedcompetitivemagneticimmunodetection AT holgerspiegel sensitiveaflatoxinb1detectionusingnanoparticlebasedcompetitivemagneticimmunodetection AT hansjoachimkrause sensitiveaflatoxinb1detectionusingnanoparticlebasedcompetitivemagneticimmunodetection AT stefanschillberg sensitiveaflatoxinb1detectionusingnanoparticlebasedcompetitivemagneticimmunodetection AT florianschroper sensitiveaflatoxinb1detectionusingnanoparticlebasedcompetitivemagneticimmunodetection |