Genome sequence and comparative genomic analysis of a clinically important strain CD11-4 of Janibacter melonis isolated from celiac disease patient
Abstract Background Janibacter melonis and other member of this genus are known to cause bacteremia and serious clinical comorbidities, but there is no study reporting about pathogenicity attributes of J. melonis. Janibacter terrae is known to cause lethal infection. Reporting the genome of J. melon...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2018-01-01
|
Series: | Gut Pathogens |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13099-018-0229-x |
_version_ | 1818047975650230272 |
---|---|
author | Atul Munish Chander Rakesh Kochhar Devinder Kumar Dhawan Sanjay Kumar Bhadada Shanmugam Mayilraj |
author_facet | Atul Munish Chander Rakesh Kochhar Devinder Kumar Dhawan Sanjay Kumar Bhadada Shanmugam Mayilraj |
author_sort | Atul Munish Chander |
collection | DOAJ |
description | Abstract Background Janibacter melonis and other member of this genus are known to cause bacteremia and serious clinical comorbidities, but there is no study reporting about pathogenicity attributes of J. melonis. Janibacter terrae is known to cause lethal infection. Reporting the genome of J. melonis CD11-4 and comparative genomics with other members of genus has provided some novel insights that can enable us to understand the mechanisms responsible for its pathogenicity in humans. Results Comparative genomic analysis by Rapid Annotation Server and Technology revealed the presence of similar virulence determinant genes in both J. terrae NBRC 107853T and J. melonis CD11-4. Like J. terrae NBRC 107853T, J. melonis CD11-4 contained two genes responsible for resistance against β-lactam class of antibiotics and two genes for resistance against fluoroquinolones. Interestingly, J. melonis CD11-4 contained a unique gene coding for multidrug resistance efflux pumps unlike all other members of this genus. It also contained two genes involved in Toxin-antitoxin Systems that were absent in J. terrae NBRC 107853T but were present in some other members of genus. Conclusions Genome annotations of J. melonis CD11-4 revealed that it contained similar or more virulence repertoire like J. terrae NBRC 107853T. Like other gut pathogens, J. melonis possesses key virulence determinant genes for antibiotic resistance, invasion, adhesion, biofilm formation, iron acquisition and to cope with stress response, thereby indicating that strain J. melonis CD11-4 could be a gut pathogen. |
first_indexed | 2024-12-10T10:14:20Z |
format | Article |
id | doaj.art-da346cb5ea474becb4a648b3e903763c |
institution | Directory Open Access Journal |
issn | 1757-4749 |
language | English |
last_indexed | 2024-12-10T10:14:20Z |
publishDate | 2018-01-01 |
publisher | BMC |
record_format | Article |
series | Gut Pathogens |
spelling | doaj.art-da346cb5ea474becb4a648b3e903763c2022-12-22T01:53:03ZengBMCGut Pathogens1757-47492018-01-011011810.1186/s13099-018-0229-xGenome sequence and comparative genomic analysis of a clinically important strain CD11-4 of Janibacter melonis isolated from celiac disease patientAtul Munish Chander0Rakesh Kochhar1Devinder Kumar Dhawan2Sanjay Kumar Bhadada3Shanmugam Mayilraj4Department of Biophysics, Panjab UniversityDepartment of Gastroenterology, Postgraduate Institute of Medical Education and ResearchDepartment of Biophysics, Panjab UniversityDepartment of Endocrinology, Postgraduate Institute of Medical Education and ResearchMicrobial Type Culture Collection and Gene Bank (MTCC), CSIR-Institute of Microbial TechnologyAbstract Background Janibacter melonis and other member of this genus are known to cause bacteremia and serious clinical comorbidities, but there is no study reporting about pathogenicity attributes of J. melonis. Janibacter terrae is known to cause lethal infection. Reporting the genome of J. melonis CD11-4 and comparative genomics with other members of genus has provided some novel insights that can enable us to understand the mechanisms responsible for its pathogenicity in humans. Results Comparative genomic analysis by Rapid Annotation Server and Technology revealed the presence of similar virulence determinant genes in both J. terrae NBRC 107853T and J. melonis CD11-4. Like J. terrae NBRC 107853T, J. melonis CD11-4 contained two genes responsible for resistance against β-lactam class of antibiotics and two genes for resistance against fluoroquinolones. Interestingly, J. melonis CD11-4 contained a unique gene coding for multidrug resistance efflux pumps unlike all other members of this genus. It also contained two genes involved in Toxin-antitoxin Systems that were absent in J. terrae NBRC 107853T but were present in some other members of genus. Conclusions Genome annotations of J. melonis CD11-4 revealed that it contained similar or more virulence repertoire like J. terrae NBRC 107853T. Like other gut pathogens, J. melonis possesses key virulence determinant genes for antibiotic resistance, invasion, adhesion, biofilm formation, iron acquisition and to cope with stress response, thereby indicating that strain J. melonis CD11-4 could be a gut pathogen.http://link.springer.com/article/10.1186/s13099-018-0229-xGenome sequencingJanibacter melonisVirulenceClinical pathogen |
spellingShingle | Atul Munish Chander Rakesh Kochhar Devinder Kumar Dhawan Sanjay Kumar Bhadada Shanmugam Mayilraj Genome sequence and comparative genomic analysis of a clinically important strain CD11-4 of Janibacter melonis isolated from celiac disease patient Gut Pathogens Genome sequencing Janibacter melonis Virulence Clinical pathogen |
title | Genome sequence and comparative genomic analysis of a clinically important strain CD11-4 of Janibacter melonis isolated from celiac disease patient |
title_full | Genome sequence and comparative genomic analysis of a clinically important strain CD11-4 of Janibacter melonis isolated from celiac disease patient |
title_fullStr | Genome sequence and comparative genomic analysis of a clinically important strain CD11-4 of Janibacter melonis isolated from celiac disease patient |
title_full_unstemmed | Genome sequence and comparative genomic analysis of a clinically important strain CD11-4 of Janibacter melonis isolated from celiac disease patient |
title_short | Genome sequence and comparative genomic analysis of a clinically important strain CD11-4 of Janibacter melonis isolated from celiac disease patient |
title_sort | genome sequence and comparative genomic analysis of a clinically important strain cd11 4 of janibacter melonis isolated from celiac disease patient |
topic | Genome sequencing Janibacter melonis Virulence Clinical pathogen |
url | http://link.springer.com/article/10.1186/s13099-018-0229-x |
work_keys_str_mv | AT atulmunishchander genomesequenceandcomparativegenomicanalysisofaclinicallyimportantstraincd114ofjanibactermelonisisolatedfromceliacdiseasepatient AT rakeshkochhar genomesequenceandcomparativegenomicanalysisofaclinicallyimportantstraincd114ofjanibactermelonisisolatedfromceliacdiseasepatient AT devinderkumardhawan genomesequenceandcomparativegenomicanalysisofaclinicallyimportantstraincd114ofjanibactermelonisisolatedfromceliacdiseasepatient AT sanjaykumarbhadada genomesequenceandcomparativegenomicanalysisofaclinicallyimportantstraincd114ofjanibactermelonisisolatedfromceliacdiseasepatient AT shanmugammayilraj genomesequenceandcomparativegenomicanalysisofaclinicallyimportantstraincd114ofjanibactermelonisisolatedfromceliacdiseasepatient |