Antioxidant Potential and Inhibition of Mitochondrial Permeability Transition Pore by Myricetin Reduces Aluminium Phosphide-Induced Cytotoxicity and Mitochondrial Impairments

Oxidative stress and mitochondrial dysfunction are involved in the mechanisms of cardiac toxicity induced by aluminum phosphide (AlP). AlP-induced cardiotoxicity leads to cardiomyocyte death, cardiomyopathy, cardiac dysfunction, and eventually severe heart failure and death. Importantly, protecting...

Full description

Bibliographic Details
Main Authors: Ahmad Salimi, Zhaleh Jamali, Mohammad Shabani
Format: Article
Language:English
Published: Frontiers Media S.A. 2021-11-01
Series:Frontiers in Pharmacology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fphar.2021.719081/full
_version_ 1818431228107292672
author Ahmad Salimi
Ahmad Salimi
Zhaleh Jamali
Mohammad Shabani
Mohammad Shabani
author_facet Ahmad Salimi
Ahmad Salimi
Zhaleh Jamali
Mohammad Shabani
Mohammad Shabani
author_sort Ahmad Salimi
collection DOAJ
description Oxidative stress and mitochondrial dysfunction are involved in the mechanisms of cardiac toxicity induced by aluminum phosphide (AlP). AlP-induced cardiotoxicity leads to cardiomyocyte death, cardiomyopathy, cardiac dysfunction, and eventually severe heart failure and death. Importantly, protecting cardiomyocytes from death resulting from AlP is vital for improving survival. It has been reported that flavonoids such as myricetin (Myr) act as modifiers of mitochondrial function and prevent mitochondrial damage resulting from many insults and subsequent cell dysfunction. In this study, the ameliorative effect of Myr, as an important antioxidant and mitochondrial protective agent, was investigated in cardiomyocytes and mitochondria isolated from rat heart against AlP-induced toxicity, oxidative stress, and mitochondrial dysfunction. Treatment of AlP (20 μg/ml) significantly increased cytotoxicity; reduced glutathione (GSH) depletion, cellular reactive oxygen species (ROS) formation, malondialdehyde (MDA) level, ATP depletion, caspase-3 activation, mitochondrial membrane potential (ΔΨm) collapse, and lysosomal dysfunction; and decreased the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) in intact cardiomyocytes. Also, treatment of AlP (20 μg/ml) significantly increased mitochondrial dysfunction and swelling in isolated mitochondria. Myr (80 µM) appeared to ameliorate AlP-induced cytotoxicity in isolated cardiomyocytes; significantly lessened the AlP-stimulated intracellular ROS and MDA production and depletion of GSH; and increased the activities of SOD, CAT, and GSH-Px. Furthermore, Myr (40 and 80 µM) lowered AlP-induced lysosomal/mitochondrial dysfunction, ATP depletion, and caspase-3 activation. In the light of these findings, we concluded that Myr through antioxidant potential and inhibition of mitochondrial permeability transition (MPT) pore exerted an ameliorative role in AlP-induced toxicity in isolated cardiomyocytes and mitochondria, and it would be valuable to examine its in vivo effects.
first_indexed 2024-12-14T15:45:58Z
format Article
id doaj.art-da3ed911db2e449588889ef30de12881
institution Directory Open Access Journal
issn 1663-9812
language English
last_indexed 2024-12-14T15:45:58Z
publishDate 2021-11-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Pharmacology
spelling doaj.art-da3ed911db2e449588889ef30de128812022-12-21T22:55:30ZengFrontiers Media S.A.Frontiers in Pharmacology1663-98122021-11-011210.3389/fphar.2021.719081719081Antioxidant Potential and Inhibition of Mitochondrial Permeability Transition Pore by Myricetin Reduces Aluminium Phosphide-Induced Cytotoxicity and Mitochondrial ImpairmentsAhmad Salimi0Ahmad Salimi1Zhaleh Jamali2Mohammad Shabani3Mohammad Shabani4Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, IranTraditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, IranStudent Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, IranDepartment of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, IranStudents Research Committee, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, IranOxidative stress and mitochondrial dysfunction are involved in the mechanisms of cardiac toxicity induced by aluminum phosphide (AlP). AlP-induced cardiotoxicity leads to cardiomyocyte death, cardiomyopathy, cardiac dysfunction, and eventually severe heart failure and death. Importantly, protecting cardiomyocytes from death resulting from AlP is vital for improving survival. It has been reported that flavonoids such as myricetin (Myr) act as modifiers of mitochondrial function and prevent mitochondrial damage resulting from many insults and subsequent cell dysfunction. In this study, the ameliorative effect of Myr, as an important antioxidant and mitochondrial protective agent, was investigated in cardiomyocytes and mitochondria isolated from rat heart against AlP-induced toxicity, oxidative stress, and mitochondrial dysfunction. Treatment of AlP (20 μg/ml) significantly increased cytotoxicity; reduced glutathione (GSH) depletion, cellular reactive oxygen species (ROS) formation, malondialdehyde (MDA) level, ATP depletion, caspase-3 activation, mitochondrial membrane potential (ΔΨm) collapse, and lysosomal dysfunction; and decreased the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) in intact cardiomyocytes. Also, treatment of AlP (20 μg/ml) significantly increased mitochondrial dysfunction and swelling in isolated mitochondria. Myr (80 µM) appeared to ameliorate AlP-induced cytotoxicity in isolated cardiomyocytes; significantly lessened the AlP-stimulated intracellular ROS and MDA production and depletion of GSH; and increased the activities of SOD, CAT, and GSH-Px. Furthermore, Myr (40 and 80 µM) lowered AlP-induced lysosomal/mitochondrial dysfunction, ATP depletion, and caspase-3 activation. In the light of these findings, we concluded that Myr through antioxidant potential and inhibition of mitochondrial permeability transition (MPT) pore exerted an ameliorative role in AlP-induced toxicity in isolated cardiomyocytes and mitochondria, and it would be valuable to examine its in vivo effects.https://www.frontiersin.org/articles/10.3389/fphar.2021.719081/fullcardiomyopathypoisoningflavonoidsantioxidantmitochondrial dysfunction
spellingShingle Ahmad Salimi
Ahmad Salimi
Zhaleh Jamali
Mohammad Shabani
Mohammad Shabani
Antioxidant Potential and Inhibition of Mitochondrial Permeability Transition Pore by Myricetin Reduces Aluminium Phosphide-Induced Cytotoxicity and Mitochondrial Impairments
Frontiers in Pharmacology
cardiomyopathy
poisoning
flavonoids
antioxidant
mitochondrial dysfunction
title Antioxidant Potential and Inhibition of Mitochondrial Permeability Transition Pore by Myricetin Reduces Aluminium Phosphide-Induced Cytotoxicity and Mitochondrial Impairments
title_full Antioxidant Potential and Inhibition of Mitochondrial Permeability Transition Pore by Myricetin Reduces Aluminium Phosphide-Induced Cytotoxicity and Mitochondrial Impairments
title_fullStr Antioxidant Potential and Inhibition of Mitochondrial Permeability Transition Pore by Myricetin Reduces Aluminium Phosphide-Induced Cytotoxicity and Mitochondrial Impairments
title_full_unstemmed Antioxidant Potential and Inhibition of Mitochondrial Permeability Transition Pore by Myricetin Reduces Aluminium Phosphide-Induced Cytotoxicity and Mitochondrial Impairments
title_short Antioxidant Potential and Inhibition of Mitochondrial Permeability Transition Pore by Myricetin Reduces Aluminium Phosphide-Induced Cytotoxicity and Mitochondrial Impairments
title_sort antioxidant potential and inhibition of mitochondrial permeability transition pore by myricetin reduces aluminium phosphide induced cytotoxicity and mitochondrial impairments
topic cardiomyopathy
poisoning
flavonoids
antioxidant
mitochondrial dysfunction
url https://www.frontiersin.org/articles/10.3389/fphar.2021.719081/full
work_keys_str_mv AT ahmadsalimi antioxidantpotentialandinhibitionofmitochondrialpermeabilitytransitionporebymyricetinreducesaluminiumphosphideinducedcytotoxicityandmitochondrialimpairments
AT ahmadsalimi antioxidantpotentialandinhibitionofmitochondrialpermeabilitytransitionporebymyricetinreducesaluminiumphosphideinducedcytotoxicityandmitochondrialimpairments
AT zhalehjamali antioxidantpotentialandinhibitionofmitochondrialpermeabilitytransitionporebymyricetinreducesaluminiumphosphideinducedcytotoxicityandmitochondrialimpairments
AT mohammadshabani antioxidantpotentialandinhibitionofmitochondrialpermeabilitytransitionporebymyricetinreducesaluminiumphosphideinducedcytotoxicityandmitochondrialimpairments
AT mohammadshabani antioxidantpotentialandinhibitionofmitochondrialpermeabilitytransitionporebymyricetinreducesaluminiumphosphideinducedcytotoxicityandmitochondrialimpairments