Assessing the Biodegradability of PHB-Based Materials with Different Surface Areas: A Comparative Study on Soil Exposure of Films and Electrospun Materials
Due to the current environmental situation, biopolymers are replacing the usual synthetic polymers, and special attention is being paid to poly-3-hydroxybutyrate (PHB), which is a biodegradable polymer of natural origin. In this paper, the rate of biodegradation of films and fibers based on PHB was...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-04-01
|
Series: | Polymers |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-4360/15/9/2042 |
_version_ | 1797601957269995520 |
---|---|
author | Kristina G. Gasparyan Polina M. Tyubaeva Ivetta A. Varyan Alexandre A. Vetcher Anatoly A. Popov |
author_facet | Kristina G. Gasparyan Polina M. Tyubaeva Ivetta A. Varyan Alexandre A. Vetcher Anatoly A. Popov |
author_sort | Kristina G. Gasparyan |
collection | DOAJ |
description | Due to the current environmental situation, biopolymers are replacing the usual synthetic polymers, and special attention is being paid to poly-3-hydroxybutyrate (PHB), which is a biodegradable polymer of natural origin. In this paper, the rate of biodegradation of films and fibers based on PHB was compared. The influence of exposure to soil on the structure and properties of materials was evaluated using methods of mechanical analysis, the DSC method and FTIR spectroscopy. The results showed rapid decomposition of the fibrous material and also showed how the surface of the material affects the rate of biodegradation and the mechanical properties of the material. It was found that maximum strength decreased by 91% in the fibrous material and by 49% in the film. Additionally, the DSC method showed that the crystallinity of the fiber after exposure to the soil decreased. It was established that the rate of degradation is influenced by different factors, including the surface area of the material and its susceptibility to soil microorganisms. The results obtained are of great importance for planning the structure of features in the manufacture of biopolymer consumer products in areas such as medicine, packaging, filters, protective layers and coatings, etc. Therefore, an understanding of the biodegradation mechanisms of PHB could lead to the development of effective medical devices, packaging materials and different objects with a short working lifespan. |
first_indexed | 2024-03-11T04:09:31Z |
format | Article |
id | doaj.art-da491b76801e44a38413823830604bef |
institution | Directory Open Access Journal |
issn | 2073-4360 |
language | English |
last_indexed | 2024-03-11T04:09:31Z |
publishDate | 2023-04-01 |
publisher | MDPI AG |
record_format | Article |
series | Polymers |
spelling | doaj.art-da491b76801e44a38413823830604bef2023-11-17T23:34:21ZengMDPI AGPolymers2073-43602023-04-01159204210.3390/polym15092042Assessing the Biodegradability of PHB-Based Materials with Different Surface Areas: A Comparative Study on Soil Exposure of Films and Electrospun MaterialsKristina G. Gasparyan0Polina M. Tyubaeva1Ivetta A. Varyan2Alexandre A. Vetcher3Anatoly A. Popov4Department of Physical Chemistry of Synthetic and Natural Polymer Compositions, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, RussiaDepartment of Physical Chemistry of Synthetic and Natural Polymer Compositions, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, RussiaDepartment of Physical Chemistry of Synthetic and Natural Polymer Compositions, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, RussiaComplementary and Integrative Health Clinic of Dr. Shishonin, 5 Yasnogorskaya Str., 117588 Moscow, RussiaDepartment of Physical Chemistry of Synthetic and Natural Polymer Compositions, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, RussiaDue to the current environmental situation, biopolymers are replacing the usual synthetic polymers, and special attention is being paid to poly-3-hydroxybutyrate (PHB), which is a biodegradable polymer of natural origin. In this paper, the rate of biodegradation of films and fibers based on PHB was compared. The influence of exposure to soil on the structure and properties of materials was evaluated using methods of mechanical analysis, the DSC method and FTIR spectroscopy. The results showed rapid decomposition of the fibrous material and also showed how the surface of the material affects the rate of biodegradation and the mechanical properties of the material. It was found that maximum strength decreased by 91% in the fibrous material and by 49% in the film. Additionally, the DSC method showed that the crystallinity of the fiber after exposure to the soil decreased. It was established that the rate of degradation is influenced by different factors, including the surface area of the material and its susceptibility to soil microorganisms. The results obtained are of great importance for planning the structure of features in the manufacture of biopolymer consumer products in areas such as medicine, packaging, filters, protective layers and coatings, etc. Therefore, an understanding of the biodegradation mechanisms of PHB could lead to the development of effective medical devices, packaging materials and different objects with a short working lifespan.https://www.mdpi.com/2073-4360/15/9/2042biodegradable polymerspoly-3-hydroxybutyrateelectrospinningfiberfilmdecomposition |
spellingShingle | Kristina G. Gasparyan Polina M. Tyubaeva Ivetta A. Varyan Alexandre A. Vetcher Anatoly A. Popov Assessing the Biodegradability of PHB-Based Materials with Different Surface Areas: A Comparative Study on Soil Exposure of Films and Electrospun Materials Polymers biodegradable polymers poly-3-hydroxybutyrate electrospinning fiber film decomposition |
title | Assessing the Biodegradability of PHB-Based Materials with Different Surface Areas: A Comparative Study on Soil Exposure of Films and Electrospun Materials |
title_full | Assessing the Biodegradability of PHB-Based Materials with Different Surface Areas: A Comparative Study on Soil Exposure of Films and Electrospun Materials |
title_fullStr | Assessing the Biodegradability of PHB-Based Materials with Different Surface Areas: A Comparative Study on Soil Exposure of Films and Electrospun Materials |
title_full_unstemmed | Assessing the Biodegradability of PHB-Based Materials with Different Surface Areas: A Comparative Study on Soil Exposure of Films and Electrospun Materials |
title_short | Assessing the Biodegradability of PHB-Based Materials with Different Surface Areas: A Comparative Study on Soil Exposure of Films and Electrospun Materials |
title_sort | assessing the biodegradability of phb based materials with different surface areas a comparative study on soil exposure of films and electrospun materials |
topic | biodegradable polymers poly-3-hydroxybutyrate electrospinning fiber film decomposition |
url | https://www.mdpi.com/2073-4360/15/9/2042 |
work_keys_str_mv | AT kristinaggasparyan assessingthebiodegradabilityofphbbasedmaterialswithdifferentsurfaceareasacomparativestudyonsoilexposureoffilmsandelectrospunmaterials AT polinamtyubaeva assessingthebiodegradabilityofphbbasedmaterialswithdifferentsurfaceareasacomparativestudyonsoilexposureoffilmsandelectrospunmaterials AT ivettaavaryan assessingthebiodegradabilityofphbbasedmaterialswithdifferentsurfaceareasacomparativestudyonsoilexposureoffilmsandelectrospunmaterials AT alexandreavetcher assessingthebiodegradabilityofphbbasedmaterialswithdifferentsurfaceareasacomparativestudyonsoilexposureoffilmsandelectrospunmaterials AT anatolyapopov assessingthebiodegradabilityofphbbasedmaterialswithdifferentsurfaceareasacomparativestudyonsoilexposureoffilmsandelectrospunmaterials |