Ulam–Hyers Stability and Well-Posedness of Fixed Point Problems in <i>C</i>*-Algebra Valued Bipolar <i>b</i>-Metric Spaces

Here, we shall introduce the new notion of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>C</mi><mo>*</mo></msup></semantics></math></inline-formula>-al...

Full description

Bibliographic Details
Main Authors: Manoj Kumar, Pankaj Kumar, Ali Mutlu, Rajagopalan Ramaswamy, Ola A. Ashour Abdelnaby, Stojan Radenović
Format: Article
Language:English
Published: MDPI AG 2023-05-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/10/2323
_version_ 1797599263461474304
author Manoj Kumar
Pankaj Kumar
Ali Mutlu
Rajagopalan Ramaswamy
Ola A. Ashour Abdelnaby
Stojan Radenović
author_facet Manoj Kumar
Pankaj Kumar
Ali Mutlu
Rajagopalan Ramaswamy
Ola A. Ashour Abdelnaby
Stojan Radenović
author_sort Manoj Kumar
collection DOAJ
description Here, we shall introduce the new notion of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>C</mi><mo>*</mo></msup></semantics></math></inline-formula>-algebra valued bipolar <i>b</i>-metric spaces as a generalization of usual metric spaces, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>C</mi><mo>*</mo></msup></semantics></math></inline-formula>-algebra valued metric space, <i>b</i>-metric spaces. In the above-mentioned spaces, we shall define <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msub><mi>α</mi><mi mathvariant="fraktur">A</mi></msub><mo>−</mo><msub><mi>ψ</mi><mi mathvariant="fraktur">A</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> contractions and prove some fixed point theorems for these contractions. Some existing results from the literature are also proved by using our main results. As an application Ulam–Hyers stability and well-posedness of fixed point problems are also discussed. Some examples are also given to illustrate our results.
first_indexed 2024-03-11T03:31:43Z
format Article
id doaj.art-da52824da9eb40ae9677a61b66508fb2
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-11T03:31:43Z
publishDate 2023-05-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-da52824da9eb40ae9677a61b66508fb22023-11-18T02:19:19ZengMDPI AGMathematics2227-73902023-05-011110232310.3390/math11102323Ulam–Hyers Stability and Well-Posedness of Fixed Point Problems in <i>C</i>*-Algebra Valued Bipolar <i>b</i>-Metric SpacesManoj Kumar0Pankaj Kumar1Ali Mutlu2Rajagopalan Ramaswamy3Ola A. Ashour Abdelnaby4Stojan Radenović5Department of Mathematics, Baba Mastnath University, Asthal Bohar, Rohtak 124021, Haryana, IndiaDepartment of Mathematics, Baba Mastnath University, Asthal Bohar, Rohtak 124021, Haryana, IndiaDepartment of Mathematics, Faculty of Science and Arts, Manisa Celal Bayar University, Martyr Prof. Dr. İlhan Varank Campus, 45140 Manisa, TürkiyeDepartment of Mathematics, College of Science and Humanities in Alkharj, Prince Sattam bin Abdulaziz University, AlKharj 11942, Saudi ArabiaDepartment of Mathematics, College of Science and Humanities in Alkharj, Prince Sattam bin Abdulaziz University, AlKharj 11942, Saudi ArabiaFaculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120 Belgrade, SerbiaHere, we shall introduce the new notion of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>C</mi><mo>*</mo></msup></semantics></math></inline-formula>-algebra valued bipolar <i>b</i>-metric spaces as a generalization of usual metric spaces, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>C</mi><mo>*</mo></msup></semantics></math></inline-formula>-algebra valued metric space, <i>b</i>-metric spaces. In the above-mentioned spaces, we shall define <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msub><mi>α</mi><mi mathvariant="fraktur">A</mi></msub><mo>−</mo><msub><mi>ψ</mi><mi mathvariant="fraktur">A</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> contractions and prove some fixed point theorems for these contractions. Some existing results from the literature are also proved by using our main results. As an application Ulam–Hyers stability and well-posedness of fixed point problems are also discussed. Some examples are also given to illustrate our results.https://www.mdpi.com/2227-7390/11/10/2323<i>C</i>*-algebra valued bipolar <i>b</i>-metric spacecovariant mappingcontravariant mappingfixed pointsUlam–Hyers stabilitywell-posdeness
spellingShingle Manoj Kumar
Pankaj Kumar
Ali Mutlu
Rajagopalan Ramaswamy
Ola A. Ashour Abdelnaby
Stojan Radenović
Ulam–Hyers Stability and Well-Posedness of Fixed Point Problems in <i>C</i>*-Algebra Valued Bipolar <i>b</i>-Metric Spaces
Mathematics
<i>C</i>*-algebra valued bipolar <i>b</i>-metric space
covariant mapping
contravariant mapping
fixed points
Ulam–Hyers stability
well-posdeness
title Ulam–Hyers Stability and Well-Posedness of Fixed Point Problems in <i>C</i>*-Algebra Valued Bipolar <i>b</i>-Metric Spaces
title_full Ulam–Hyers Stability and Well-Posedness of Fixed Point Problems in <i>C</i>*-Algebra Valued Bipolar <i>b</i>-Metric Spaces
title_fullStr Ulam–Hyers Stability and Well-Posedness of Fixed Point Problems in <i>C</i>*-Algebra Valued Bipolar <i>b</i>-Metric Spaces
title_full_unstemmed Ulam–Hyers Stability and Well-Posedness of Fixed Point Problems in <i>C</i>*-Algebra Valued Bipolar <i>b</i>-Metric Spaces
title_short Ulam–Hyers Stability and Well-Posedness of Fixed Point Problems in <i>C</i>*-Algebra Valued Bipolar <i>b</i>-Metric Spaces
title_sort ulam hyers stability and well posedness of fixed point problems in i c i algebra valued bipolar i b i metric spaces
topic <i>C</i>*-algebra valued bipolar <i>b</i>-metric space
covariant mapping
contravariant mapping
fixed points
Ulam–Hyers stability
well-posdeness
url https://www.mdpi.com/2227-7390/11/10/2323
work_keys_str_mv AT manojkumar ulamhyersstabilityandwellposednessoffixedpointproblemsinicialgebravaluedbipolaribimetricspaces
AT pankajkumar ulamhyersstabilityandwellposednessoffixedpointproblemsinicialgebravaluedbipolaribimetricspaces
AT alimutlu ulamhyersstabilityandwellposednessoffixedpointproblemsinicialgebravaluedbipolaribimetricspaces
AT rajagopalanramaswamy ulamhyersstabilityandwellposednessoffixedpointproblemsinicialgebravaluedbipolaribimetricspaces
AT olaaashourabdelnaby ulamhyersstabilityandwellposednessoffixedpointproblemsinicialgebravaluedbipolaribimetricspaces
AT stojanradenovic ulamhyersstabilityandwellposednessoffixedpointproblemsinicialgebravaluedbipolaribimetricspaces