Entropy and Information jump for log-concave vectors
We extend the result of Ball and Nguyen on the jump of entropy under convolution for log-concave random vectors. We show that the result holds for any pair of vectors (not necessarily identically distributed) and that a similar inequality holds for the Fisher information, thus providing a quantitati...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2023-02-01
|
Series: | Comptes Rendus. Mathématique |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.390/ |
_version_ | 1797651501564297216 |
---|---|
author | Bizeul, Pierre |
author_facet | Bizeul, Pierre |
author_sort | Bizeul, Pierre |
collection | DOAJ |
description | We extend the result of Ball and Nguyen on the jump of entropy under convolution for log-concave random vectors. We show that the result holds for any pair of vectors (not necessarily identically distributed) and that a similar inequality holds for the Fisher information, thus providing a quantitative Blachmann–Stam inequality. |
first_indexed | 2024-03-11T16:16:43Z |
format | Article |
id | doaj.art-da69fd9203bd449eba7b2cd146dd9489 |
institution | Directory Open Access Journal |
issn | 1778-3569 |
language | English |
last_indexed | 2024-03-11T16:16:43Z |
publishDate | 2023-02-01 |
publisher | Académie des sciences |
record_format | Article |
series | Comptes Rendus. Mathématique |
spelling | doaj.art-da69fd9203bd449eba7b2cd146dd94892023-10-24T14:20:17ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-02-01361G248749310.5802/crmath.39010.5802/crmath.390Entropy and Information jump for log-concave vectorsBizeul, Pierre0Institut de Mathématiques de Jussieu-Paris Rive Gauche, Sorbonne Université, 4 place de Jussieu 75005 Paris, FranceWe extend the result of Ball and Nguyen on the jump of entropy under convolution for log-concave random vectors. We show that the result holds for any pair of vectors (not necessarily identically distributed) and that a similar inequality holds for the Fisher information, thus providing a quantitative Blachmann–Stam inequality.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.390/ |
spellingShingle | Bizeul, Pierre Entropy and Information jump for log-concave vectors Comptes Rendus. Mathématique |
title | Entropy and Information jump for log-concave vectors |
title_full | Entropy and Information jump for log-concave vectors |
title_fullStr | Entropy and Information jump for log-concave vectors |
title_full_unstemmed | Entropy and Information jump for log-concave vectors |
title_short | Entropy and Information jump for log-concave vectors |
title_sort | entropy and information jump for log concave vectors |
url | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.390/ |
work_keys_str_mv | AT bizeulpierre entropyandinformationjumpforlogconcavevectors |