Entropy and Information jump for log-concave vectors

We extend the result of Ball and Nguyen on the jump of entropy under convolution for log-concave random vectors. We show that the result holds for any pair of vectors (not necessarily identically distributed) and that a similar inequality holds for the Fisher information, thus providing a quantitati...

Full description

Bibliographic Details
Main Author: Bizeul, Pierre
Format: Article
Language:English
Published: Académie des sciences 2023-02-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.390/
_version_ 1797651501564297216
author Bizeul, Pierre
author_facet Bizeul, Pierre
author_sort Bizeul, Pierre
collection DOAJ
description We extend the result of Ball and Nguyen on the jump of entropy under convolution for log-concave random vectors. We show that the result holds for any pair of vectors (not necessarily identically distributed) and that a similar inequality holds for the Fisher information, thus providing a quantitative Blachmann–Stam inequality.
first_indexed 2024-03-11T16:16:43Z
format Article
id doaj.art-da69fd9203bd449eba7b2cd146dd9489
institution Directory Open Access Journal
issn 1778-3569
language English
last_indexed 2024-03-11T16:16:43Z
publishDate 2023-02-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj.art-da69fd9203bd449eba7b2cd146dd94892023-10-24T14:20:17ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-02-01361G248749310.5802/crmath.39010.5802/crmath.390Entropy and Information jump for log-concave vectorsBizeul, Pierre0Institut de Mathématiques de Jussieu-Paris Rive Gauche, Sorbonne Université, 4 place de Jussieu 75005 Paris, FranceWe extend the result of Ball and Nguyen on the jump of entropy under convolution for log-concave random vectors. We show that the result holds for any pair of vectors (not necessarily identically distributed) and that a similar inequality holds for the Fisher information, thus providing a quantitative Blachmann–Stam inequality.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.390/
spellingShingle Bizeul, Pierre
Entropy and Information jump for log-concave vectors
Comptes Rendus. Mathématique
title Entropy and Information jump for log-concave vectors
title_full Entropy and Information jump for log-concave vectors
title_fullStr Entropy and Information jump for log-concave vectors
title_full_unstemmed Entropy and Information jump for log-concave vectors
title_short Entropy and Information jump for log-concave vectors
title_sort entropy and information jump for log concave vectors
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.390/
work_keys_str_mv AT bizeulpierre entropyandinformationjumpforlogconcavevectors