Symmetric Identities for Carlitz-Type Higher-Order Degenerate (<i>p</i>,<i>q</i>)-Euler Numbers and Polynomials
The main goal of this paper is to investigate some interesting symmetric identities for Carlitz-type higher-order degenerate <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>q&...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-11-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/11/12/1432 |
_version_ | 1811304629262090240 |
---|---|
author | Kyung-Won Hwang Cheon Seoung Ryoo |
author_facet | Kyung-Won Hwang Cheon Seoung Ryoo |
author_sort | Kyung-Won Hwang |
collection | DOAJ |
description | The main goal of this paper is to investigate some interesting symmetric identities for Carlitz-type higher-order degenerate <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-Euler numbers, and polynomials. At first, the Carlitz-type higher-order degenerate <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-Euler numbers and polynomials are defined. We give few new symmetric identities for Carlitz-type higher-order degenerate <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-Euler numbers and polynomials. |
first_indexed | 2024-04-13T08:10:49Z |
format | Article |
id | doaj.art-da79c423754f4d37835b1c9ee6724964 |
institution | Directory Open Access Journal |
issn | 2073-8994 |
language | English |
last_indexed | 2024-04-13T08:10:49Z |
publishDate | 2019-11-01 |
publisher | MDPI AG |
record_format | Article |
series | Symmetry |
spelling | doaj.art-da79c423754f4d37835b1c9ee67249642022-12-22T02:55:01ZengMDPI AGSymmetry2073-89942019-11-011112143210.3390/sym11121432sym11121432Symmetric Identities for Carlitz-Type Higher-Order Degenerate (<i>p</i>,<i>q</i>)-Euler Numbers and PolynomialsKyung-Won Hwang0Cheon Seoung Ryoo1Department of Mathematics, Dong-A University, Busan 49315, KoreaDepartment of Mathematics, Hannam University, Daejeon 34430, KoreaThe main goal of this paper is to investigate some interesting symmetric identities for Carlitz-type higher-order degenerate <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-Euler numbers, and polynomials. At first, the Carlitz-type higher-order degenerate <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-Euler numbers and polynomials are defined. We give few new symmetric identities for Carlitz-type higher-order degenerate <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-Euler numbers and polynomials.https://www.mdpi.com/2073-8994/11/12/1432euler numbers and polynomialsdegenerate euler numbers and polynomialscarlitz-type degenerate (p,q)-euler numbers and polynomialscarlitz-type higher-order degenerate (p,q)-euler numbers and polynomialssymmetric identities |
spellingShingle | Kyung-Won Hwang Cheon Seoung Ryoo Symmetric Identities for Carlitz-Type Higher-Order Degenerate (<i>p</i>,<i>q</i>)-Euler Numbers and Polynomials Symmetry euler numbers and polynomials degenerate euler numbers and polynomials carlitz-type degenerate (p,q)-euler numbers and polynomials carlitz-type higher-order degenerate (p,q)-euler numbers and polynomials symmetric identities |
title | Symmetric Identities for Carlitz-Type Higher-Order Degenerate (<i>p</i>,<i>q</i>)-Euler Numbers and Polynomials |
title_full | Symmetric Identities for Carlitz-Type Higher-Order Degenerate (<i>p</i>,<i>q</i>)-Euler Numbers and Polynomials |
title_fullStr | Symmetric Identities for Carlitz-Type Higher-Order Degenerate (<i>p</i>,<i>q</i>)-Euler Numbers and Polynomials |
title_full_unstemmed | Symmetric Identities for Carlitz-Type Higher-Order Degenerate (<i>p</i>,<i>q</i>)-Euler Numbers and Polynomials |
title_short | Symmetric Identities for Carlitz-Type Higher-Order Degenerate (<i>p</i>,<i>q</i>)-Euler Numbers and Polynomials |
title_sort | symmetric identities for carlitz type higher order degenerate i p i i q i euler numbers and polynomials |
topic | euler numbers and polynomials degenerate euler numbers and polynomials carlitz-type degenerate (p,q)-euler numbers and polynomials carlitz-type higher-order degenerate (p,q)-euler numbers and polynomials symmetric identities |
url | https://www.mdpi.com/2073-8994/11/12/1432 |
work_keys_str_mv | AT kyungwonhwang symmetricidentitiesforcarlitztypehigherorderdegenerateipiiqieulernumbersandpolynomials AT cheonseoungryoo symmetricidentitiesforcarlitztypehigherorderdegenerateipiiqieulernumbersandpolynomials |