Symmetric Identities for Carlitz-Type Higher-Order Degenerate (<i>p</i>,<i>q</i>)-Euler Numbers and Polynomials

The main goal of this paper is to investigate some interesting symmetric identities for Carlitz-type higher-order degenerate <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>q&...

Full description

Bibliographic Details
Main Authors: Kyung-Won Hwang, Cheon Seoung Ryoo
Format: Article
Language:English
Published: MDPI AG 2019-11-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/11/12/1432
_version_ 1811304629262090240
author Kyung-Won Hwang
Cheon Seoung Ryoo
author_facet Kyung-Won Hwang
Cheon Seoung Ryoo
author_sort Kyung-Won Hwang
collection DOAJ
description The main goal of this paper is to investigate some interesting symmetric identities for Carlitz-type higher-order degenerate <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-Euler numbers, and polynomials. At first, the Carlitz-type higher-order degenerate <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-Euler numbers and polynomials are defined. We give few new symmetric identities for Carlitz-type higher-order degenerate <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-Euler numbers and polynomials.
first_indexed 2024-04-13T08:10:49Z
format Article
id doaj.art-da79c423754f4d37835b1c9ee6724964
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-04-13T08:10:49Z
publishDate 2019-11-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-da79c423754f4d37835b1c9ee67249642022-12-22T02:55:01ZengMDPI AGSymmetry2073-89942019-11-011112143210.3390/sym11121432sym11121432Symmetric Identities for Carlitz-Type Higher-Order Degenerate (<i>p</i>,<i>q</i>)-Euler Numbers and PolynomialsKyung-Won Hwang0Cheon Seoung Ryoo1Department of Mathematics, Dong-A University, Busan 49315, KoreaDepartment of Mathematics, Hannam University, Daejeon 34430, KoreaThe main goal of this paper is to investigate some interesting symmetric identities for Carlitz-type higher-order degenerate <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-Euler numbers, and polynomials. At first, the Carlitz-type higher-order degenerate <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-Euler numbers and polynomials are defined. We give few new symmetric identities for Carlitz-type higher-order degenerate <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-Euler numbers and polynomials.https://www.mdpi.com/2073-8994/11/12/1432euler numbers and polynomialsdegenerate euler numbers and polynomialscarlitz-type degenerate (p,q)-euler numbers and polynomialscarlitz-type higher-order degenerate (p,q)-euler numbers and polynomialssymmetric identities
spellingShingle Kyung-Won Hwang
Cheon Seoung Ryoo
Symmetric Identities for Carlitz-Type Higher-Order Degenerate (<i>p</i>,<i>q</i>)-Euler Numbers and Polynomials
Symmetry
euler numbers and polynomials
degenerate euler numbers and polynomials
carlitz-type degenerate (p,q)-euler numbers and polynomials
carlitz-type higher-order degenerate (p,q)-euler numbers and polynomials
symmetric identities
title Symmetric Identities for Carlitz-Type Higher-Order Degenerate (<i>p</i>,<i>q</i>)-Euler Numbers and Polynomials
title_full Symmetric Identities for Carlitz-Type Higher-Order Degenerate (<i>p</i>,<i>q</i>)-Euler Numbers and Polynomials
title_fullStr Symmetric Identities for Carlitz-Type Higher-Order Degenerate (<i>p</i>,<i>q</i>)-Euler Numbers and Polynomials
title_full_unstemmed Symmetric Identities for Carlitz-Type Higher-Order Degenerate (<i>p</i>,<i>q</i>)-Euler Numbers and Polynomials
title_short Symmetric Identities for Carlitz-Type Higher-Order Degenerate (<i>p</i>,<i>q</i>)-Euler Numbers and Polynomials
title_sort symmetric identities for carlitz type higher order degenerate i p i i q i euler numbers and polynomials
topic euler numbers and polynomials
degenerate euler numbers and polynomials
carlitz-type degenerate (p,q)-euler numbers and polynomials
carlitz-type higher-order degenerate (p,q)-euler numbers and polynomials
symmetric identities
url https://www.mdpi.com/2073-8994/11/12/1432
work_keys_str_mv AT kyungwonhwang symmetricidentitiesforcarlitztypehigherorderdegenerateipiiqieulernumbersandpolynomials
AT cheonseoungryoo symmetricidentitiesforcarlitztypehigherorderdegenerateipiiqieulernumbersandpolynomials