Influence of Particle Mass Fraction over the Turbulent Behaviour of an Incompressible Particle-Laden Flow

The presence of spherical solid particles immersed in an incompressible turbulent flow was numerically investigated from the perspective of the particle mass fraction (PMF or <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semanti...

Full description

Bibliographic Details
Main Authors: Carlos Alberto Duque-Daza, Jesus Ramirez-Pastran, Santiago Lain
Format: Article
Language:English
Published: MDPI AG 2021-10-01
Series:Fluids
Subjects:
Online Access:https://www.mdpi.com/2311-5521/6/11/374
_version_ 1797510399283691520
author Carlos Alberto Duque-Daza
Jesus Ramirez-Pastran
Santiago Lain
author_facet Carlos Alberto Duque-Daza
Jesus Ramirez-Pastran
Santiago Lain
author_sort Carlos Alberto Duque-Daza
collection DOAJ
description The presence of spherical solid particles immersed in an incompressible turbulent flow was numerically investigated from the perspective of the particle mass fraction (PMF or <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ϕ</mi><mi>m</mi></msub></semantics></math></inline-formula>), a measure of the particle-to-fluid mass ratio. Although a number of different changes have been reported to be obtained by the presence of solid particles in incompressible turbulent flows, the present study reports the findings of varying <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ϕ</mi><mi>m</mi></msub></semantics></math></inline-formula> in the the turbulent behaviour of the flow, including aspects such as: turbulent statistics, skin-friction coefficient, and the general dynamics of a particle-laden flow. For this purpose, a particle-laden turbulent channel flow transporting solid particles at three different friction Reynolds numbers, namely <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><msub><mi>e</mi><mi>τ</mi></msub><mo>=</mo><mn>180</mn></mrow></semantics></math></inline-formula>, 365, and 950, with a fixed particle volume fraction of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ϕ</mi><mi>v</mi></msub><mo>=</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula>, was employed as conceptual flow model and simulated using large eddy simulations. The value adopted for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ϕ</mi><mi>v</mi></msub></semantics></math></inline-formula> allowed the use of a two-way coupling approach between the particles and the flow or carrier phase. Three different values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ϕ</mi><mi>m</mi></msub></semantics></math></inline-formula> were explored in this work <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ϕ</mi><mi>m</mi></msub><mo>≈</mo><mn>1</mn><mo>,</mo><mn>2.96</mn></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>12.4</mn></mrow></semantics></math></inline-formula>. Assessment of the effect of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ϕ</mi><mi>m</mi></msub></semantics></math></inline-formula> was performed by examining changes of mean velocity profiles, velocity fluctuation profiles, and a number of other relevant turbulence statistics. Our results show that attenuation of turbulence activity of the carrier phase is attained, and that such attenuation increases with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ϕ</mi><mi>m</mi></msub></semantics></math></inline-formula> at fixed Reynolds numbers and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ϕ</mi><mi>v</mi></msub></semantics></math></inline-formula>. For the smallest Reynolds number case considered, flows carrying particles with higher <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ϕ</mi><mi>m</mi></msub></semantics></math></inline-formula> exhibited lower energy requirements to sustain constant fluid mass flow rate conditions. By examining the flow velocity field, as well as instantaneous velocity components contours, it is shown that the attenuation acts even on the largest scales of the flow dynamics, and not only at the smaller levels. These findings reinforce the concept of a selective stabilising effect induced by the solid particles, particularly enhanced by high values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ϕ</mi><mi>m</mi></msub></semantics></math></inline-formula>, which could eventually be exploited for improvement of energetic efficiency of piping or equivalent particles transport systems.
first_indexed 2024-03-10T05:30:58Z
format Article
id doaj.art-da99ca31357948f187a345b0c87b60a4
institution Directory Open Access Journal
issn 2311-5521
language English
last_indexed 2024-03-10T05:30:58Z
publishDate 2021-10-01
publisher MDPI AG
record_format Article
series Fluids
spelling doaj.art-da99ca31357948f187a345b0c87b60a42023-11-22T23:17:15ZengMDPI AGFluids2311-55212021-10-0161137410.3390/fluids6110374Influence of Particle Mass Fraction over the Turbulent Behaviour of an Incompressible Particle-Laden FlowCarlos Alberto Duque-Daza0Jesus Ramirez-Pastran1Santiago Lain2GNUM, Department of Mechanical and Mechatronics Engineering, Universidad Nacional de Colombia, Bogota 111321, ColombiaGNUM, Department of Mechanical and Mechatronics Engineering, Universidad Nacional de Colombia, Bogota 111321, ColombiaPAI+, Department of Energetics and Mechanics, Universidad Autónoma de Occidente, Cali 760030, ColombiaThe presence of spherical solid particles immersed in an incompressible turbulent flow was numerically investigated from the perspective of the particle mass fraction (PMF or <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ϕ</mi><mi>m</mi></msub></semantics></math></inline-formula>), a measure of the particle-to-fluid mass ratio. Although a number of different changes have been reported to be obtained by the presence of solid particles in incompressible turbulent flows, the present study reports the findings of varying <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ϕ</mi><mi>m</mi></msub></semantics></math></inline-formula> in the the turbulent behaviour of the flow, including aspects such as: turbulent statistics, skin-friction coefficient, and the general dynamics of a particle-laden flow. For this purpose, a particle-laden turbulent channel flow transporting solid particles at three different friction Reynolds numbers, namely <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><msub><mi>e</mi><mi>τ</mi></msub><mo>=</mo><mn>180</mn></mrow></semantics></math></inline-formula>, 365, and 950, with a fixed particle volume fraction of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ϕ</mi><mi>v</mi></msub><mo>=</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula>, was employed as conceptual flow model and simulated using large eddy simulations. The value adopted for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ϕ</mi><mi>v</mi></msub></semantics></math></inline-formula> allowed the use of a two-way coupling approach between the particles and the flow or carrier phase. Three different values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ϕ</mi><mi>m</mi></msub></semantics></math></inline-formula> were explored in this work <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ϕ</mi><mi>m</mi></msub><mo>≈</mo><mn>1</mn><mo>,</mo><mn>2.96</mn></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>12.4</mn></mrow></semantics></math></inline-formula>. Assessment of the effect of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ϕ</mi><mi>m</mi></msub></semantics></math></inline-formula> was performed by examining changes of mean velocity profiles, velocity fluctuation profiles, and a number of other relevant turbulence statistics. Our results show that attenuation of turbulence activity of the carrier phase is attained, and that such attenuation increases with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ϕ</mi><mi>m</mi></msub></semantics></math></inline-formula> at fixed Reynolds numbers and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ϕ</mi><mi>v</mi></msub></semantics></math></inline-formula>. For the smallest Reynolds number case considered, flows carrying particles with higher <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ϕ</mi><mi>m</mi></msub></semantics></math></inline-formula> exhibited lower energy requirements to sustain constant fluid mass flow rate conditions. By examining the flow velocity field, as well as instantaneous velocity components contours, it is shown that the attenuation acts even on the largest scales of the flow dynamics, and not only at the smaller levels. These findings reinforce the concept of a selective stabilising effect induced by the solid particles, particularly enhanced by high values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ϕ</mi><mi>m</mi></msub></semantics></math></inline-formula>, which could eventually be exploited for improvement of energetic efficiency of piping or equivalent particles transport systems.https://www.mdpi.com/2311-5521/6/11/374particle-laden channel flowturbulence modulationtwo-way couplinglarge-eddy simulationsdrag reduction
spellingShingle Carlos Alberto Duque-Daza
Jesus Ramirez-Pastran
Santiago Lain
Influence of Particle Mass Fraction over the Turbulent Behaviour of an Incompressible Particle-Laden Flow
Fluids
particle-laden channel flow
turbulence modulation
two-way coupling
large-eddy simulations
drag reduction
title Influence of Particle Mass Fraction over the Turbulent Behaviour of an Incompressible Particle-Laden Flow
title_full Influence of Particle Mass Fraction over the Turbulent Behaviour of an Incompressible Particle-Laden Flow
title_fullStr Influence of Particle Mass Fraction over the Turbulent Behaviour of an Incompressible Particle-Laden Flow
title_full_unstemmed Influence of Particle Mass Fraction over the Turbulent Behaviour of an Incompressible Particle-Laden Flow
title_short Influence of Particle Mass Fraction over the Turbulent Behaviour of an Incompressible Particle-Laden Flow
title_sort influence of particle mass fraction over the turbulent behaviour of an incompressible particle laden flow
topic particle-laden channel flow
turbulence modulation
two-way coupling
large-eddy simulations
drag reduction
url https://www.mdpi.com/2311-5521/6/11/374
work_keys_str_mv AT carlosalbertoduquedaza influenceofparticlemassfractionovertheturbulentbehaviourofanincompressibleparticleladenflow
AT jesusramirezpastran influenceofparticlemassfractionovertheturbulentbehaviourofanincompressibleparticleladenflow
AT santiagolain influenceofparticlemassfractionovertheturbulentbehaviourofanincompressibleparticleladenflow