Characterization of an unanticipated indium-sulfur metallocycle complex

We have produced a novel indium-based metallocycle complex (In-MeSH), which we initially observed as an unanticipated side-product in metal–organic framework (MOF) syntheses. The serendipitously synthesized metallocycle forms via the acid-catalysed decomposition of dimethyl sulfoxide (DMSO) during s...

Full description

Bibliographic Details
Main Authors: Joshua J. Morris, Adam Nevin, Joel Cornelio, Timothy L. Easun
Format: Article
Language:English
Published: The Royal Society 2023-09-01
Series:Royal Society Open Science
Subjects:
Online Access:https://royalsocietypublishing.org/doi/10.1098/rsos.230060
Description
Summary:We have produced a novel indium-based metallocycle complex (In-MeSH), which we initially observed as an unanticipated side-product in metal–organic framework (MOF) syntheses. The serendipitously synthesized metallocycle forms via the acid-catalysed decomposition of dimethyl sulfoxide (DMSO) during solvothermal reactions in the presence of indium nitrate, dimethylformamide and nitric acid. A search through the Cambridge Structural Database revealed isostructural zinc, ruthenium and palladium metallocycle complexes formed by other routes. The ruthenium analogue is catalytically active and the In-MeSH structure similarly displays accessible open metal sites around the outside of the ring. Furthermore, this study also gives access to the relatively uncommon oxidation state of In(II), the targeted synthesis of which can be challenging. In(II) complexes have been reported as having potentially important applications in areas such as catalytic water splitting.
ISSN:2054-5703