Piezoelectric Materials: Properties, Advancements, and Design Strategies for High-Temperature Applications

Piezoelectronics, as an efficient approach for energy conversion and sensing, have a far-reaching influence on energy harvesting, precise instruments, sensing, health monitoring and so on. A majority of the previous works on piezoelectronics concentrated on the materials that are applied at close to...

Full description

Bibliographic Details
Main Authors: Yanfang Meng, Genqiang Chen, Maoyong Huang
Format: Article
Language:English
Published: MDPI AG 2022-04-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/12/7/1171
Description
Summary:Piezoelectronics, as an efficient approach for energy conversion and sensing, have a far-reaching influence on energy harvesting, precise instruments, sensing, health monitoring and so on. A majority of the previous works on piezoelectronics concentrated on the materials that are applied at close to room temperatures. However, there is inadequate research on the materials for high-temperature piezoelectric applications, yet they also have important applications in the critical equipment of aeroengines and nuclear reactors in harsh and high-temperature conditions. In this review, we briefly introduce fundamental knowledge about the piezoelectric effect, and emphatically elucidate high-temperature piezoelectrics, involving: the typical piezoelectric materials operated in high temperatures, and the applications, limiting factors, prospects and challenges of piezoelectricity at high temperatures.
ISSN:2079-4991