Development and validation of an Haemophilus influenzae supragenome hybridization (SGH) array for transcriptomic analyses.
We previously carried out the design and testing of a custom-built Haemophilus influenzae supragenome hybridization (SGH) array that contains probe sequences to 2,890 gene clusters identified by whole genome sequencing of 24 strains of H. influenzae. The array was originally designed as a tool to in...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2014-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC4188559?pdf=render |
_version_ | 1798044950439395328 |
---|---|
author | Benjamin A Janto N Luisa Hiller Rory A Eutsey Margaret E Dahlgren Joshua P Earl Evan Powell Azad Ahmed Fen Z Hu Garth D Ehrlich |
author_facet | Benjamin A Janto N Luisa Hiller Rory A Eutsey Margaret E Dahlgren Joshua P Earl Evan Powell Azad Ahmed Fen Z Hu Garth D Ehrlich |
author_sort | Benjamin A Janto |
collection | DOAJ |
description | We previously carried out the design and testing of a custom-built Haemophilus influenzae supragenome hybridization (SGH) array that contains probe sequences to 2,890 gene clusters identified by whole genome sequencing of 24 strains of H. influenzae. The array was originally designed as a tool to interrogate the gene content of large numbers of clinical isolates without the need for sequencing, however, the data obtained is quantitative and is thus suitable for transcriptomic analyses. In the current study RNA was extracted from H. influenzae strain CZ4126/02 (which was not included in the design of the array) converted to cDNA, and labelled and hybridized to the SGH arrays to assess the quality and reproducibility of data obtained from these custom-designed chips to serve as a tool for transcriptomics. Three types of experimental replicates were analyzed with all showing very high degrees of correlation, thus validating both the array and the methods used for RNA profiling. A custom filtering pipeline for two-condition unpaired data using five metrics was developed to minimize variability within replicates and to maximize the identification of the most significant true transcriptional differences between two samples. These methods can be extended to transcriptional analysis of other bacterial species utilizing supragenome-based arrays. |
first_indexed | 2024-04-11T23:12:29Z |
format | Article |
id | doaj.art-dab24db95a0f4dcc919c6b635dd330ee |
institution | Directory Open Access Journal |
issn | 1932-6203 |
language | English |
last_indexed | 2024-04-11T23:12:29Z |
publishDate | 2014-01-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj.art-dab24db95a0f4dcc919c6b635dd330ee2022-12-22T03:57:46ZengPublic Library of Science (PLoS)PLoS ONE1932-62032014-01-01910e10549310.1371/journal.pone.0105493Development and validation of an Haemophilus influenzae supragenome hybridization (SGH) array for transcriptomic analyses.Benjamin A JantoN Luisa HillerRory A EutseyMargaret E DahlgrenJoshua P EarlEvan PowellAzad AhmedFen Z HuGarth D EhrlichWe previously carried out the design and testing of a custom-built Haemophilus influenzae supragenome hybridization (SGH) array that contains probe sequences to 2,890 gene clusters identified by whole genome sequencing of 24 strains of H. influenzae. The array was originally designed as a tool to interrogate the gene content of large numbers of clinical isolates without the need for sequencing, however, the data obtained is quantitative and is thus suitable for transcriptomic analyses. In the current study RNA was extracted from H. influenzae strain CZ4126/02 (which was not included in the design of the array) converted to cDNA, and labelled and hybridized to the SGH arrays to assess the quality and reproducibility of data obtained from these custom-designed chips to serve as a tool for transcriptomics. Three types of experimental replicates were analyzed with all showing very high degrees of correlation, thus validating both the array and the methods used for RNA profiling. A custom filtering pipeline for two-condition unpaired data using five metrics was developed to minimize variability within replicates and to maximize the identification of the most significant true transcriptional differences between two samples. These methods can be extended to transcriptional analysis of other bacterial species utilizing supragenome-based arrays.http://europepmc.org/articles/PMC4188559?pdf=render |
spellingShingle | Benjamin A Janto N Luisa Hiller Rory A Eutsey Margaret E Dahlgren Joshua P Earl Evan Powell Azad Ahmed Fen Z Hu Garth D Ehrlich Development and validation of an Haemophilus influenzae supragenome hybridization (SGH) array for transcriptomic analyses. PLoS ONE |
title | Development and validation of an Haemophilus influenzae supragenome hybridization (SGH) array for transcriptomic analyses. |
title_full | Development and validation of an Haemophilus influenzae supragenome hybridization (SGH) array for transcriptomic analyses. |
title_fullStr | Development and validation of an Haemophilus influenzae supragenome hybridization (SGH) array for transcriptomic analyses. |
title_full_unstemmed | Development and validation of an Haemophilus influenzae supragenome hybridization (SGH) array for transcriptomic analyses. |
title_short | Development and validation of an Haemophilus influenzae supragenome hybridization (SGH) array for transcriptomic analyses. |
title_sort | development and validation of an haemophilus influenzae supragenome hybridization sgh array for transcriptomic analyses |
url | http://europepmc.org/articles/PMC4188559?pdf=render |
work_keys_str_mv | AT benjaminajanto developmentandvalidationofanhaemophilusinfluenzaesupragenomehybridizationsgharrayfortranscriptomicanalyses AT nluisahiller developmentandvalidationofanhaemophilusinfluenzaesupragenomehybridizationsgharrayfortranscriptomicanalyses AT roryaeutsey developmentandvalidationofanhaemophilusinfluenzaesupragenomehybridizationsgharrayfortranscriptomicanalyses AT margaretedahlgren developmentandvalidationofanhaemophilusinfluenzaesupragenomehybridizationsgharrayfortranscriptomicanalyses AT joshuapearl developmentandvalidationofanhaemophilusinfluenzaesupragenomehybridizationsgharrayfortranscriptomicanalyses AT evanpowell developmentandvalidationofanhaemophilusinfluenzaesupragenomehybridizationsgharrayfortranscriptomicanalyses AT azadahmed developmentandvalidationofanhaemophilusinfluenzaesupragenomehybridizationsgharrayfortranscriptomicanalyses AT fenzhu developmentandvalidationofanhaemophilusinfluenzaesupragenomehybridizationsgharrayfortranscriptomicanalyses AT garthdehrlich developmentandvalidationofanhaemophilusinfluenzaesupragenomehybridizationsgharrayfortranscriptomicanalyses |