Logarithmically improved blow-up criteria for the 3D nonhomogeneous incompressible Navier-Stokes equations with vacuum

This article is devoted to the study of the nonhomogeneous incompressible Navier-Stokes equations in space dimension three. By making use of the "weakly nonlinear" energy estimate approach introduced by Lei and Zhou in [16], we establish two logarithmically improved blow-up criteria of...

תיאור מלא

מידע ביבליוגרפי
Main Authors: Qianqian Hou, Xiaojing Xu, Zhuan Ye
פורמט: Article
שפה:English
יצא לאור: Texas State University 2016-07-01
סדרה:Electronic Journal of Differential Equations
נושאים:
גישה מקוונת:http://ejde.math.txstate.edu/Volumes/2016/192/abstr.html
תיאור
סיכום:This article is devoted to the study of the nonhomogeneous incompressible Navier-Stokes equations in space dimension three. By making use of the "weakly nonlinear" energy estimate approach introduced by Lei and Zhou in [16], we establish two logarithmically improved blow-up criteria of the strong or smooth solutions subject to vacuum for the 3D nonhomogeneous incompressible Navier-Stokes equations in the whole space R^3. This results extend recent regularity criterion obtained by Kim (2006) [13].
ISSN:1072-6691