Non-monotone convergence schemes

We consider the second order BVP x″ = f (t, x, x′), x′(a) = A, x′(b) = B provided that there exist α and β (lower and upper functions) such that: β′ (α) < A < α′(a) and β′(b) < B < α′ (b). We consider monotone and non-monotone approximations of solutions to the Neumann problem. The resul...

Full description

Bibliographic Details
Main Author: Maria Dobkevich
Format: Article
Language:English
Published: Vilnius Gediminas Technical University 2012-09-01
Series:Mathematical Modelling and Analysis
Subjects:
Online Access:https://journals.vgtu.lt/index.php/MMA/article/view/4896
_version_ 1818887899454636032
author Maria Dobkevich
author_facet Maria Dobkevich
author_sort Maria Dobkevich
collection DOAJ
description We consider the second order BVP x″ = f (t, x, x′), x′(a) = A, x′(b) = B provided that there exist α and β (lower and upper functions) such that: β′ (α) < A < α′(a) and β′(b) < B < α′ (b). We consider monotone and non-monotone approximations of solutions to the Neumann problem. The results and examples are provided.
first_indexed 2024-12-19T16:44:34Z
format Article
id doaj.art-dad0f1ab1d9b410c9efe80ea1aa98fed
institution Directory Open Access Journal
issn 1392-6292
1648-3510
language English
last_indexed 2024-12-19T16:44:34Z
publishDate 2012-09-01
publisher Vilnius Gediminas Technical University
record_format Article
series Mathematical Modelling and Analysis
spelling doaj.art-dad0f1ab1d9b410c9efe80ea1aa98fed2022-12-21T20:13:41ZengVilnius Gediminas Technical UniversityMathematical Modelling and Analysis1392-62921648-35102012-09-0117410.3846/13926292.2012.711780Non-monotone convergence schemesMaria Dobkevich0Daugavpils University Parades str. 1, LV-5400 Daugavpils, LatviaWe consider the second order BVP x″ = f (t, x, x′), x′(a) = A, x′(b) = B provided that there exist α and β (lower and upper functions) such that: β′ (α) < A < α′(a) and β′(b) < B < α′ (b). We consider monotone and non-monotone approximations of solutions to the Neumann problem. The results and examples are provided.https://journals.vgtu.lt/index.php/MMA/article/view/4896nonlinear boundary value problemmonotone iterationsNeumann boundary conditionnon-monotone iterations
spellingShingle Maria Dobkevich
Non-monotone convergence schemes
Mathematical Modelling and Analysis
nonlinear boundary value problem
monotone iterations
Neumann boundary condition
non-monotone iterations
title Non-monotone convergence schemes
title_full Non-monotone convergence schemes
title_fullStr Non-monotone convergence schemes
title_full_unstemmed Non-monotone convergence schemes
title_short Non-monotone convergence schemes
title_sort non monotone convergence schemes
topic nonlinear boundary value problem
monotone iterations
Neumann boundary condition
non-monotone iterations
url https://journals.vgtu.lt/index.php/MMA/article/view/4896
work_keys_str_mv AT mariadobkevich nonmonotoneconvergenceschemes