A Hybrid Path Loss Prediction Model based on Artificial Neural Networks using Empirical Models for LTE And LTE-A at 800 MHz and 2600 MHz

Abstract This article presents the analysis of a hybrid, error correction-based, neural network model to predict the path loss for suburban areas at 800 MHz and 2600 MHz, obtained by combining empirical propagation models, ECC-33, Ericsson 9999, Okumura Hata, and 3GPP's TR 36.942, with a feedfo...

Full description

Bibliographic Details
Main Authors: Bruno J. Cavalcanti, Gustavo A. Cavalcante, Laércio M. de Mendonça, Gabriel M. Cantanhede, Marcelo M.M. de Oliveira, Adaildo G. D’Assunção
Format: Article
Language:English
Published: Sociedade Brasileira de Microondas e Optoeletrônica; Sociedade Brasileira de Eletromagnetismo
Series:Journal of Microwaves, Optoelectronics and Electromagnetic Applications
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742017000300708&lng=en&tlng=en
_version_ 1819210714280099840
author Bruno J. Cavalcanti
Gustavo A. Cavalcante
Laércio M. de Mendonça
Gabriel M. Cantanhede
Marcelo M.M. de Oliveira
Adaildo G. D’Assunção
author_facet Bruno J. Cavalcanti
Gustavo A. Cavalcante
Laércio M. de Mendonça
Gabriel M. Cantanhede
Marcelo M.M. de Oliveira
Adaildo G. D’Assunção
author_sort Bruno J. Cavalcanti
collection DOAJ
description Abstract This article presents the analysis of a hybrid, error correction-based, neural network model to predict the path loss for suburban areas at 800 MHz and 2600 MHz, obtained by combining empirical propagation models, ECC-33, Ericsson 9999, Okumura Hata, and 3GPP's TR 36.942, with a feedforward Artificial Neural Network (ANN). The performance of the hybrid model was compared against regular versions of the empirical models and a simple neural network fed with input parameters commonly used in related works. Results were compared with data obtained by measurements performed in the vicinity of the Federal University of Rio Grande do Norte (UFRN), in the city of Natal, Brazil. In the end, the hybrid neural network obtained the lowest RMSE indexes, besides almost equalizing the distribution of simulated and experimental data, indicating greater similarity with measurements.
first_indexed 2024-12-23T06:15:34Z
format Article
id doaj.art-dae115aa596a439f8dda6272e42ace49
institution Directory Open Access Journal
issn 2179-1074
language English
last_indexed 2024-12-23T06:15:34Z
publisher Sociedade Brasileira de Microondas e Optoeletrônica; Sociedade Brasileira de Eletromagnetismo
record_format Article
series Journal of Microwaves, Optoelectronics and Electromagnetic Applications
spelling doaj.art-dae115aa596a439f8dda6272e42ace492022-12-21T17:57:18ZengSociedade Brasileira de Microondas e Optoeletrônica; Sociedade Brasileira de EletromagnetismoJournal of Microwaves, Optoelectronics and Electromagnetic Applications2179-107416370872210.1590/2179-10742017v16i3925S2179-10742017000300708A Hybrid Path Loss Prediction Model based on Artificial Neural Networks using Empirical Models for LTE And LTE-A at 800 MHz and 2600 MHzBruno J. CavalcantiGustavo A. CavalcanteLaércio M. de MendonçaGabriel M. CantanhedeMarcelo M.M. de OliveiraAdaildo G. D’AssunçãoAbstract This article presents the analysis of a hybrid, error correction-based, neural network model to predict the path loss for suburban areas at 800 MHz and 2600 MHz, obtained by combining empirical propagation models, ECC-33, Ericsson 9999, Okumura Hata, and 3GPP's TR 36.942, with a feedforward Artificial Neural Network (ANN). The performance of the hybrid model was compared against regular versions of the empirical models and a simple neural network fed with input parameters commonly used in related works. Results were compared with data obtained by measurements performed in the vicinity of the Federal University of Rio Grande do Norte (UFRN), in the city of Natal, Brazil. In the end, the hybrid neural network obtained the lowest RMSE indexes, besides almost equalizing the distribution of simulated and experimental data, indicating greater similarity with measurements.http://www.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742017000300708&lng=en&tlng=enArtificial Neural Networks - ANNLong Term Evolution - LTELong Term Evolution Advanced - LTE-Apropagation modelspath loss
spellingShingle Bruno J. Cavalcanti
Gustavo A. Cavalcante
Laércio M. de Mendonça
Gabriel M. Cantanhede
Marcelo M.M. de Oliveira
Adaildo G. D’Assunção
A Hybrid Path Loss Prediction Model based on Artificial Neural Networks using Empirical Models for LTE And LTE-A at 800 MHz and 2600 MHz
Journal of Microwaves, Optoelectronics and Electromagnetic Applications
Artificial Neural Networks - ANN
Long Term Evolution - LTE
Long Term Evolution Advanced - LTE-A
propagation models
path loss
title A Hybrid Path Loss Prediction Model based on Artificial Neural Networks using Empirical Models for LTE And LTE-A at 800 MHz and 2600 MHz
title_full A Hybrid Path Loss Prediction Model based on Artificial Neural Networks using Empirical Models for LTE And LTE-A at 800 MHz and 2600 MHz
title_fullStr A Hybrid Path Loss Prediction Model based on Artificial Neural Networks using Empirical Models for LTE And LTE-A at 800 MHz and 2600 MHz
title_full_unstemmed A Hybrid Path Loss Prediction Model based on Artificial Neural Networks using Empirical Models for LTE And LTE-A at 800 MHz and 2600 MHz
title_short A Hybrid Path Loss Prediction Model based on Artificial Neural Networks using Empirical Models for LTE And LTE-A at 800 MHz and 2600 MHz
title_sort hybrid path loss prediction model based on artificial neural networks using empirical models for lte and lte a at 800 mhz and 2600 mhz
topic Artificial Neural Networks - ANN
Long Term Evolution - LTE
Long Term Evolution Advanced - LTE-A
propagation models
path loss
url http://www.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742017000300708&lng=en&tlng=en
work_keys_str_mv AT brunojcavalcanti ahybridpathlosspredictionmodelbasedonartificialneuralnetworksusingempiricalmodelsforlteandlteaat800mhzand2600mhz
AT gustavoacavalcante ahybridpathlosspredictionmodelbasedonartificialneuralnetworksusingempiricalmodelsforlteandlteaat800mhzand2600mhz
AT laerciomdemendonca ahybridpathlosspredictionmodelbasedonartificialneuralnetworksusingempiricalmodelsforlteandlteaat800mhzand2600mhz
AT gabrielmcantanhede ahybridpathlosspredictionmodelbasedonartificialneuralnetworksusingempiricalmodelsforlteandlteaat800mhzand2600mhz
AT marcelommdeoliveira ahybridpathlosspredictionmodelbasedonartificialneuralnetworksusingempiricalmodelsforlteandlteaat800mhzand2600mhz
AT adaildogdassuncao ahybridpathlosspredictionmodelbasedonartificialneuralnetworksusingempiricalmodelsforlteandlteaat800mhzand2600mhz
AT brunojcavalcanti hybridpathlosspredictionmodelbasedonartificialneuralnetworksusingempiricalmodelsforlteandlteaat800mhzand2600mhz
AT gustavoacavalcante hybridpathlosspredictionmodelbasedonartificialneuralnetworksusingempiricalmodelsforlteandlteaat800mhzand2600mhz
AT laerciomdemendonca hybridpathlosspredictionmodelbasedonartificialneuralnetworksusingempiricalmodelsforlteandlteaat800mhzand2600mhz
AT gabrielmcantanhede hybridpathlosspredictionmodelbasedonartificialneuralnetworksusingempiricalmodelsforlteandlteaat800mhzand2600mhz
AT marcelommdeoliveira hybridpathlosspredictionmodelbasedonartificialneuralnetworksusingempiricalmodelsforlteandlteaat800mhzand2600mhz
AT adaildogdassuncao hybridpathlosspredictionmodelbasedonartificialneuralnetworksusingempiricalmodelsforlteandlteaat800mhzand2600mhz